
University of California at Berkeley 
College of Engineering 

Department of Electrical Engineering and Computer Science 
 
EECS 150         D. E. Culler 
Fall 2007      

 
 

Homework #5: Memory and Protocols 
Assigned 10/4/2007, Due 10/12/2007 at 2 PM 

 
Problem 1: Draw a state transition diagram (STD) for a Moore machine that has  
 input   i ∈ { q, r, w, z }, 
 output o ∈ { 0, 1 }  
and recognizes instances of the pattern rrz.   
For example, input 
 qrwzrrzrzrrrzw 
produces the output 
 00000010000010. 
 
Moore STD: 
 
 
 
 
 
 
 
    
                      Mealy STD: 
 
 
 
 
 
 
 
 
 
 
 
 
Draw a STD for an equivalent Mealy machine. 
 
 
 

S0 
0 

S3 
1 

S2 
0 

S1 
0 

r 

~r 

r 
~r 

 r 

r 

~r 

q or w 
z 

S0 
 

S2 
 

S1 
 

r/0 

~r/0 

 r/0 

r/0 

~r/0 

q or w/0 

z/1 



Problem 2: Modify your state diagram to recognize patterns of the form r+z, where r+ 
means a sequence of one or more r’s.  What is the output for the input in problem 1? 
 
Moore STD:                 Mealy STD: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Input:  qrwzrrzrzrrrzw 
Output:   00000010100010 
 
 
 

S0 
0 

S2 
1 

S1 
0 

r ~r 

r 

 r 

~r 

q or w 

z 

S0 
 

S2 
 

r/0 

 r/0 

~r/0 

q or w/0 

z/1 



Problem 3: The old T-bird had a series of three taillights on either side (LC|LB|LA and 
RA|RB|RC) that lit up from the center our when you turned on the blinker.  Here’s a state 
transition diagram for the controller.  Give the corresponding symbolic state transition 
table. 

idle LR3

LC,LB,LA,RA,RB,RC

HAZ

L2

LB,LA

L3

LC,LB,LA

L1

LA

R2

RB,RA

R3

RC,RB,RA

R1

RA

LEFT

RIGHT

~(LEFT + RIGHT + HAZ) idle LR3

LC,LB,LA,RA,RB,RC

HAZ

L2

LB,LA

L3

LC,LB,LA

L1

LA

L2

LB,LA

L3

LC,LB,LA

L1

LA

R2

RB,RA

R2

RB,RA

R3

RC,RB,RA

R3

RC,RB,RA

R1

RA

R1

RA

LEFT

RIGHT

~(LEFT + RIGHT + HAZ)

 
 
 

Current State Current Outputs Inputs Next  State 
LEFT L1 

RIGHT R1 
 

Idle 
 
- 
 HAZ LR3 

L1 LA - L2 
L2 LB,LA - L3 
L3 LC,LB,LA - Idle 
R1 RA - R2 
R2 RB,RA - R3 
R3 RC,RB,RA - Idle 

LR3 LC,LB,LA,RA,RB,RC - Idle 
 
Problem 4. In this problem you will design a (now familiar) motion-based light controller shown in the 
diagram below.  The wall switch is normally left in the ON position, supplying power to the controller and 
the light.  The normal behavior of this controller is to turn the light ON for 30 seconds after motion is 
detected, but only if it is dark out.  In addition, there is an override mode where if the switch is turned OFF 
and back ON within 2 seconds it turns the light on for 5 minutes, regardless of daylight or motion.  
Override can occur while the light is ON, either due to motion or test. 
 
Your controller has two digital inputs based on the photocell and passive infrared sensors: daylight and 
motion.   In addition, it has a circuit that detects when the switch is turned off and provides the input 
Switch_off.  (The controller has a backup capacitor so it can run for a while with the switch off.)  It has an 
output AC_on that controls a relay to actually turn the light on and off.  It has three preset timers, each with 
a start control point and a fired signal.  The start signal for a timer should be asserted for one cycle to start 
the timer.  Each time it is pulsed it will reset the timer. 
 



Timer_2s

start_2s

fired_2s

Timer_30s

start_30s

fired_30s

Timer_5m

start_5m

fired_5m

daylight

motion Controller

AC_on

relayLight

Switch_off

Wall switch

Timer_2s

start_2s

fired_2s Timer_2s

start_2s

fired_2s

Timer_30s

start_30s

fired_30s Timer_30s

start_30s

fired_30s

Timer_5m

start_5m

fired_5m Timer_5m

start_5m

fired_5m

daylight

motion Controller

AC_on

relayLight

Switch_off

Wall switch

 
 
a. Give the symbolic state transition diagram for a Moore FSM controller.  (This should be a clear high 
level specification of the behavior.)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. Give a symbolic state transition table. (This should be 1-1 with your STD.  It should not contain the 
specific concrete encodings of the states.  It must cover all the possible inputs in each state using 
appropriate don’t-cares to make it concise.) 
 
 

Current State Inputs Next State Outputs 
~Daylight&Motion&~Switch_Off Timer_30s Start_30s Idle 

 Switch_Off Timer_2s Start_2s 
~Fired_30s&~Switch_Off Timer_30s AC_on 

Switch_Off Timer_2s Start_2s 
 

Timer_30s 
Fired_30s&~Switch_Off Idle - 

Fired_2s&Switch_Off Idle - Timer_2s 
Fired_2s&~Switch_Off Timer_5m Start_5m 

~Fired_5m Timer_5m AC_on Timer_5m 
Fired_5m Idle - 

 
Idle 

 

Timer 
2s 

Timer 
5m 

AC_ON 

Timer 
30s 

AC_ON 

~Fired_5m 

Fired_5m 

Fired_2s&~Switch_off/Start_5m 

~Fired_30s&~Switch_Off 

Switch_Off/Start_2s 

Switch_Off/Start_2s 

Fired_2s&Switch_off 

Fired_30s 

~Daylight&Motion&~Switch_off 
/Start_30s 



 
 
c. Implement your controller as a behavioral verilog module.  The structure of the code should closely 
reflect your STD and STT.  Use the same symbolic state names with parameter statement to give the 
concrete encodings.  It should have two ALWAYS blocks.  The combinational block should have a case 
statement with an arm for each state.   
 
module LightCtrl( clk, switch_off, daylight, motion, AC_on, start30, fire30, start5, fire5, 
start2, fire2)  
 input clk, switch_off, daylight, motion, fire30, fire5, fire2;  
 output AC_on, start30, start5, start2;  
  
 reg state, nextstate;  
 wire detect;  
 assign detect = motion & ~daylight;  
  
 always @ (cs, motion, daylight, switch_off, fire30, fire5, fire2)  
  case (state)  
    idle:  
       AC_on = 0; start30=0; start5=0; start2=0; 
       if (switch_off) begin nextstate = timer_2s; start2=1; 
       else if (detect) nextstate = timer_30s: start30=1;   
    timer30s:  
       AC_on=1; start30=0; start5=0; start2=0; 
       If(switch_off) begin begin nextstate = timer_2s; start2=1; 
       else if(fire30) nextstate=idle; AC_on=0;  
    timer2s:  
        AC_on=0; start30=0; start5=0; start2=0;        
        if (fire2&switch_off) nextstate = idle;  
        else if (fire2&~Switch_off) nextstate = timer5m; start5m=1;  
    timer5m:  
       AC_on=1; start30=0; start5=0; start2=0; 
       If(fire5) nextstate=idle; AC_on=0;  
 end  
  
 always @(posedge clk)  
    begin  
        start <= nextstate;  
    end  
   



Problem 5 
 a)  Given the following Mealy and Moore circuit representations, complete the timing diagram 
given the input.  The clock has a period of 8 ns and the register has a clk-to-Q delay of 2 ns and the XOR 
has a delay of 1 ns. 

 
 

 
b)  Explain the implications of using a Moore versus Mealy representation of the outputs for this circuit. 
In a mealy machine the output values will change whenever the input values change.  In the Moore 
machine the output values will only change on the clock edge. 
 
 



Problem 6. Draw the State Transition Diagrams for the controllers below.  Controller 1 is the data 
producer; it streams a sequence of values to the shared, single word buffer.  Concretely,  it reads the value 
from the memory location pointed to by the memory pointer, places it in the next value register, and sets 
the valid bit to inform the consumer that the shared buffer is full.  It increments the memory pointer before 
reading the next word.  Controller 2 is the data consumer; it takes the value from the next value register 
when valid, clears the valid bit, accumulates the value and places it in the accumulated value register.   The 
true controllers operate independently and run and potentially different rates.  The producer cannot over-
write the buffer until it has been emptied, and the consumer cannot read it until it is full. Be careful to 
design the FSM’s such that memory locations are not added in multiple times in a row and that values are 
not lost. 
 
Note that this problem is a little bit open ended.  You will need to specify the inputs and outputs of your 
two cooperating state machines, as well as determining the symbolic states and the functional behavior. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note there are many possible solutions.  An example solution is given on the next page.

Controller 1 Controller 2 

Memory Pointer 

Accumulated Value Next Value 

Valid Bit 



 

Wait 

Write 
Value 

Get 
Value 

IncPtr 

~Valid/Inc_MemPtr 

-/Load_from_Memory 

Valid 

~Load_Ready 

Load_Ready/Write_NV_Reg 

-/SetValid 

Controller 1 

Controller 2 

Wait 

~Valid 

Valid/Accumulate 

Acc 
Value 

Write 
Value 

-/ClearValid ~Done 

Done?Write_AV_Reg 


