
EECS 150 - Components and Design
Techniques for Digital Systems

Lec 22 – Sequential Logic - Advanced

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

Traversing Digital Design

EE 40 CS61C

EECS150 wks 1-6

EECS150 wks 6 - 15

Sequential Circuit Design and Timing

RTL & ISA Types of Latches
• We have focused on D-flips

– D latch => D FlipFlop => Registers (ld, clr)
– Most commonly used today (CMOS, FPGA)

• Many other types of latches
– RS, JK, T
– Should be familiar with these too

• Opportunity to look much more closely at timing
behavior

• Latch vs Flip Flops
• Timing Methodology

Recall: Forms of Sequential Logic
• Asynchronous sequential logic – “state” changes

occur whenever state inputs change (elements
may be simple wires or delay elements)

• Synchronous sequential logic – state changes
occur in lock step across all storage elements
(using a periodic waveform - the clock)

Clock

Example – ring oscillator

A B C D E X

A (=X)

B

C

D

E

Period of Repeating Waveform (tp)
Gate Delay (td)

0

1

0

1

0

1

(b) Timing waveform

Recall: General Model of Synchronous Circuit

• Our methodology so far:
– registers as D flipflops with common control
– Single-phase clock, edge triggered design

• Assumptions underlying the clean abstraction
– Input to FF valid a setup time before clock edge
– Outputs don’t change too quickly after clock edge (hold time)

» Clk-to-Q => hold time

reg regCL CL

clock input

output

option feedback

input output

input

clock

Tsu Th

X1
X2
•
•
•

Xn

switching
network

Z1
Z2
•
•
•

Zn

Circuits with Feedback
• How to control feedback?

– What stops values from cycling around endlessly

"remember"

"load"
"data" "stored value"

"0"

"1"

"stored value"

Simplest Circuits with Feedback

• Two inverters form a static memory cell
– Will hold value as long as it has power applied

• How to get a new value into the memory cell?
– Selectively break feedback path
– Load new value into cell

Latches

• Level-sensitive latch
– holds value when clock is low
– Transparent when clock is high

• What does it take to build a
consistent timing
methodology with only
latches?

– Very hard! All stages transparent at
same time.

– Require that minimum propagation
delay is greater than high phase of
the clock (duty period)

D Q

D Q D Q
a

in

clk

b

a

b

period

duty cycle (in this case, 50%)

Clocks
• Used to keep time

– Wait long enough for inputs (R' and S') to settle
– Then allow to have effect on value stored

• Clocks are regular periodic signals
– Period (time between ticks)
– Duty-cycle (time clock is high between ticks - expressed as %

of period)

Two-phase non-overlapping clocks
• Sequential elements

partition into two classes
• phase0 ele’ts feed phase1
• phase1 ele’ts feed phase0
• Approximate single

phase: each register
replaced by a pair of
latches on two phases

• Can push logic across
(retiming)

• Can always slow down
the clocks to meet all
timing constraints

D Q D Q
a

in

clk0

b

a

b

clk-0 clk1

c/l

clk1

Master-Slave Structure

• Construct D flipflop from
two D latches

D

clk

Q

setup time clock to Q delay

clk

clk’

clk

clk

clk’

clk’

clk

clk’

Latches vs FlipFlips
• Level sensitive vs edge triggered
• Very different design methodologies for correct use
• Both are clocked, but latch is asynchronous

– Output can change while clock is high

D

Clk

Q

Q

FF

Latch

R

S

Q

Q'

R
S

Q

R'
S'

Q
Q

Q'

S'

R'

Asynchronous R-S Latch

• Cross-coupled NOR gates
– Similar to inverter pair, with capability to force output to 0 (reset=1)

or 1 (set=1)

• Cross-coupled NAND gates
– Similar to inverter pair, with capability to force output to 0 (reset=0)

or 1 (set=0)

01

0 1

State Behavior of R-S latch
• Transition Table

• Sequential (output depends on history when
inputs R=0, S=0) but asynchronous

R

S

Q

Q'

S(t) R(t) Q(t) Q(t+Δ)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed

characteristic equation
Q(t+Δ) = S + R’ Q(t)

0 0

1 0

X 1

X 1Q(t)

R

S

Theoretical R-S Latch Behavior

• State Diagram
– States: possible values
– Transitions: changes

based on inputs

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

Q Q'
1 1

SR=00
SR=11SR=00

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=10SR=01

SR=01 SR=10

SR=11

possible oscillation
between states 00 and 11

R

S

Q

Q'

Reset Hold Set SetReset Race

R

S

Q

\Q

100

Timing Behavior

R

S

Q

Q'

Observed R-S Latch Behavior
• Very difficult to observe R-S latch in the 1-1 state

– One of R or S usually changes first

• Ambiguously returns to state 0-1 or 1-0
– A so-called "race condition"
– Or non-deterministic transition

SR=00SR=00

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=01 SR=10

SR=11

R

S

Q

Q'

Q(t+Δ)

R
S

Q(t)

S R Q(t) Q(t+Δ)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed characteristic equation
Q(t+Δ) = S + R’ Q(t)

R-S Latch Analysis

• Break feedback path

0 0

1 0

X 1

X 1Q(t)

R

S

enable'

S'
Q'

Q
R' R

S

Gated R-S Latch
• Control when R and S

inputs matter
– Otherwise, the slightest

glitch on R or S while
enable is low could cause
change in value stored

– Ensure R & S stable
before utilized (to avoid
transient R=1, S=1)

Set Reset

S'

R'

enable'

Q

Q'

100

clock

R' and S'

changing stable changing stablestable

Towards a Synchronous Design
• Controlling an R-S latch with a clock

– Can't let R and S change while clock is active (allowing R and S
to pass)

– Only have half of clock period for signal changes to propagate
– Signals must be stable for the other half of clock period

clock'

S'
Q'

Q
R' R

S

clock

R

S Q

Q' R

S Q

Q'R

S

Cascading Latches
• Connect output of one latch to input of another
• How to stop changes from racing through chain?

– Need to control flow of data from one latch to the next
– Advance from one latch per clock period
– Worry about logic between latches (arrows) that is too fast

» Shortest paths, not critical paths

Announcements
• Guest Lecture, Nov 29, Dr. Robert Iannucci, CTO Nokia
• Sarah Lecture on Testing Methodology Thurs.
• HW out tonight, due before Break
• Lab lecture covers “final point”
• Wireless CP this week
• Next week TAs will do extended office hours M-W rather than

formal lab.
• Final Check off week 14
• No Class Dec 6.
• Final report Friday Dec. 7. Sign up for 10 min slots

– 5 min presentation, 5 min Q&A
– Arrive 20 mins before scheduled slot to set up

Master-Slave Structure
• Break flow by alternating clocks (like an air-lock)

– Use positive clock to latch inputs into one R-S latch
– Use negative clock to change outputs with another R-S latch

• View pair as one basic unit
– master-slave flip-flop
– twice as much logic
– output changes a few gate delays after the falling edge of

clock but does not affect any cascaded flip-flops
master stage slave stage

P

P'

CLK

R

S Q

Q' R

S Q

Q'R

S

CLK

CLK’

Set
1s

catch

S
R

CLK
P
P'
Q
Q'

Reset

Master
Outputs

Slave
Outputs

The 1s Catching Problem
• In first R-S stage of master-slave FF

– 0-1-0 glitch on R or S while clock is high "caught" by master
stage

– Leads to constraints on logic (feeding the latch) to be hazard-
free

master stage slave stage

P

P'

CLK

R

S Q

Q' R

S Q

Q'R

S

10 gates

D Flip-Flop
• Make S and R complements of each other in

Master stage
– Eliminates 1s catching problem

» Input only needs to settle by clock edge
– Can't just hold previous value (must have new value ready

every clock period)
– Value of D just before clock goes low is what is stored in flip-

flop
– Can make R-S flip-flop by adding logic to make D = S + R' Q

D Q

Q'

master stage slave stage

P

P'

CLK

R

S Q

Q' R

S Q

Q'

JK Flip Flops

J(t) K(t) Q(t) Q(t+Δ)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

hold

reset

set

toggle

R-S
master/slave

K

J S

R

Q

Q’ Q’

Q

Q

D

Clk=1

R

S

0

D’

0

D’ D

Q’

negative edge-triggered D
flip-flop (D-FF)

4-5 gate delays

must respect setup and hold time
constraints to successfully

capture input

characteristic equation
Q(t+1) = D

holds D' when
clock goes low

holds D when
clock goes low

(neg) Edge-Triggered Flip-Flops

• More efficient solution: only 6 gates
– sensitive to inputs only near edge of clock signal (not while high)

Q

D

Clk=1

R

S

D

D’

D’

D’ D

Edge-Triggered Flip-Flops (cont’d)
• D = 0, Clk High

0

1
0

0

0

0

1

1

Hold state

Act as inverters

0

Q

D

Clk=1

R

S

D

D’

D’

D’ D

Edge-Triggered Flip-Flops (cont’d)
• D = 1, Clk High

0

1
0

0

0 → 1

0 → 1

0

1

1 0

1 → 0

1 → 0

D-FF Behavior when CLK=1

Q

D

Clk=1

R

S

Dl

D’

Du’

D’ Du

Q’

0

0->1

D

clk

D’

Du

0->1

1->0

R=Du’

S=Dl

Q

Q’

1->0

0

Change in D propagate through lower and upper latch, but R=S=0, isolating slave

Behavior when CLK 1->0

Q

D

Clk=1

R

S

Dl

D’

Du’

D’ Du

Q’

0

1

D

clk

D’

Du

1

0

R=Du’

S=Dl

Q

Q’

0

Falling edge allows latched D to propagate to output latch

1->0

0->1

Q’->0

Q->1

D-FF; behavior when CLK==0

• Lower output 0
• Upper latch retains

old D
• RS unchanged

when clock is low
data is held

Q

new D

Clk=0

R

S

D

D’

D’

D’ D

new D ≠ old D

Q’

D’->0

R’=Q=old D

0

D->~D’=D

positive edge-triggered FF

negative edge-triggered FF

D
CLK

Qpos
Qpos'
Qneg
Qneg'

100

Edge-Triggered Flip-Flops (cont’d)

• Positive edge-triggered
– Inputs sampled on rising edge; outputs change after rising edge

• Negative edge-triggered flip-flops
– Inputs sampled on falling edge; outputs change after falling edge

Timing Methodologies

• Rules for interconnecting components and clocks
– Guarantee proper operation of system when strictly followed

• Approach depends on building blocks used for memory
elements

– Focus on systems with edge-triggered flip-flops
» Found in programmable logic devices

– Many custom integrated circuits focus on level-sensitive latches

• Basic rules for correct timing:
– (1) Correct inputs, with respect to time, are provided to the flip-flops
– (2) No flip-flop changes state more than once per clocking event

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing Methodologies (cont’d)
• Definition of terms

– clock: periodic event, causes state of memory element to
change; can be rising or falling edge, or high or low level

– setup time: minimum time before the clocking event by which
the input must be stable (Tsu)

– hold time: minimum time after the clocking event until which
the input must remain stable (Th)

Type When inputs are sampled When output is valid
unclocked always propagation delay from input change
latch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)

edge of clock)
master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock

edge of clock)
negative clock hi-to-lo transition propagation delay from falling edge
edge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

Comparison of Latches and Flip-
Flops (cont’d)

all measurements are made from the clocking event that is,
the rising edge of the clock

Typical Timing Specifications

• Positive edge-triggered D flip-flop
– Setup and hold times
– Minimum clock width
– Propagation delays (low to high, high to low, max and typical)

Th
5ns

Tw 25ns

Tplh
25ns
13ns

Tphl
40ns
25ns

Tsu
20ns

D

CLK

Q

Tsu
20ns

Th
5ns

IN

Q0

Q1

CLK

100

Cascading Edge-triggered Flip-Flops
• Shift register

– New value goes into first stage
– While previous value of first stage goes into second stage
– Consider setup/hold/propagation delays (prop must be > hold)

CLK

IN
Q0 Q1

D Q D Q OUT

timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast
distribution of the clock

Cascading Edge-triggered Flip-Flops
(cont’d)
• Why this works

– Propagation delays exceed hold times
– Clock width constraint exceeds setup time
– This guarantees following stage will latch current value before

it changes to new value

Tsu
4ns

Tp
3ns

Th
2ns

In

Q0

Q1

CLK

Tsu
4ns

Tp
3ns

Th
2ns

original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

CLK1 is a delayed
version of CLK0

In
Q0
Q1

CLK0
CLK1

100

Clock Skew
• The problem

– Correct behavior assumes next state of all storage elements
determined by all storage elements at the same time

– This is difficult in high-performance systems because time for
clock to arrive at flip-flop is comparable to delays through logic

– Effect of skew on cascaded flip-flops:

Need Propagation – Skew > Hold Time

Summary of Latches and Flip-Flops

• Development of D-FF
– Level-sensitive used in custom integrated circuits

» can be made with 4 pairs of gates
» Usually follows multiphase non-overlapping clock discipline

– Edge-triggered used in programmable logic devices
– Good choice for data storage register

• Historically J-K FF was popular but now never used
– Similar to R-S but with 1-1 being used to toggle output (complement

state)
– Good in days of TTL/SSI (more complex input function:

D = JQ' + K'Q
– Not a good choice for PALs/PLAs as it requires 2 inputs
– Can always be implemented using D-FF

• Preset and clear inputs are highly desirable on flip-flops
– Used at start-up or to reset system to a known state

Flip-Flop Features

• Reset (set state to 0) – R
– Synchronous: Dnew = R' • Dold (when next clock edge arrives)
– Asynchronous: doesn't wait for clock, quick but dangerous

• Preset or set (set state to 1) – S (or sometimes P)
– Synchronous: Dnew = Dold + S (when next clock edge arrives)
– Asynchronous: doesn't wait for clock, quick but dangerous

• Both reset and preset
– Dnew = R' • Dold + S (set-dominant)
– Dnew = R' • Dold + R'S (reset-dominant)

• Selective input capability (input enable/load) – LD or EN
– Multiplexer at input: Dnew = LD' • Q + LD • Dold
– Load may/may not override reset/set (usually R/S have priority)

• Complementary outputs – Q and Q'

Maintaining the Digital Abstraction (in an
analog world)

• Circuit design with very sharp transitions
• Noise margin for logical values
• Carefully Design Storage Elements (SE)

– Internal feedback

• Structured System Design
– SE + CL, cycles must cross SE

• Timing Methodology
– All SE advance state together
– All inputs stable across state change

Vout

Vdd

0
Vin Vdd

D Q

reg regCL CL

clock input

output

option feedback

input output

Where does this breakdown?
• Interfacing to the physical world
• Can’t tell it “not to change near the clock edge”

Digital
Abstraction

Example Problems

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

Clocked
Synchronous

System

In is asynchronous and
fans out to D0 and D1

one FF catches the
signal, one does not

inconsistent state may
be reached!

In

Q0

Q1

CLK

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input D Q

Synchronizer

Metastability
• In worst cast, cannot bound time for FF to

decide if inputs can change right on the
edge

– Circuit has a metastable balance point

logic 0 logic 1

D Q In ?

horrible example

Practical Solution

• Series of synchronizers
– each reduces the chance of getting stuck (exponentially)

• Make P(metastability) < P(device failure)
• Oversample and then low pass

D Q D Q
Q0

Clock Clock

Q1Async
Input D Q

Synchronizer

Metastability throughout the ages

Buridan, Jean (1300-58), French Scholastic
philosopher, who held a theory of determinism,
contending that the will must choose the greater
good. Born in Bethune, he was educated at the
University of Paris, where he studied with the
English Scholastic philosopher William of Ocham.
After his studies were completed, he was
appointed professor of philosophy, and later rector,
at the same university. Buridan is traditionally but
probably incorrectly associated with a philosophical
dilemma of moral choice called "Buridan's ass." In
the problem an ass starves to death between
two alluring bundles of hay because it does not
have the will to decide which one to eat.

Didn’t take

EECS 150

