
EECS 150 - Components and Design
Techniques for Digital Systems

Lec 18 – Error Coding

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

10/25/2007 EECS 150, Fa07, Lec18-error 2

Outline
• Errors and error models
• Parity and Hamming Codes (SECDED)
• Errors in Communications
• LFSRs
• Cyclic Redundancy Check (CRC)

10/25/2007 EECS 150, Fa07, Lec18-error 3

Our beautiful digital world….
• The real world has

continuous electrical
signals

• In the real world, electrons
keep flowing

• In the real world, things
take time

• We’ve designed circuits to
create logical gates that
behave like boolean
operators

• We designed storage
elements that hold their
logical value

• We’ve developed a
synchronous timing
methodology so that
values appear to change
on clock edges

– Acyclic combinational logic
and storage elements

– Clock cycle > worst
propagation delay + setup

10/25/2007 EECS 150, Fa07, Lec18-error 4

In the real world …
• _ _ i t happens !
• Alpha particles flip bits in

memory
• Electrostatics zap wires
• Electromagnetic

interference clobbers
communication

• …

α

10/25/2007 EECS 150, Fa07, Lec18-error 5

The Challenge
• How do we design digital systems that behave

correctly even in the presence of errors?

10/25/2007 EECS 150, Fa07, Lec18-error 6

Definitions
• An error in a digital system is the corruption of

data from its correct value to some other value.
• An error is caused by a physical failure.

– Temporary or permanent

• The effects of failures are predicted by error
models.

• Example: independent error model
– a single physical failure is assumed to affect only a single bit

of data – a single error
– Multiple failures may cause multiple errors

» Much less likely

10/25/2007 EECS 150, Fa07, Lec18-error 7

Error Correction Codes (ECC)
• Memory systems generate errors (accidentally flipped-

bits)
– DRAMs store very little charge per bit
– “Soft” errors occur occasionally when cells are struck by alpha particles

or other environmental upsets.
– Less frequently, “hard” errors can occur when chips permanently fail.
– Problem gets worse as memories get denser and larger

• Where is “perfect” memory required?
– servers, spacecraft/military computers, ebay, …

• Memories are protected against failures with ECCs
• Extra bits are added to each data-word

– used to detect and/or correct faults in the memory system
– in general, each possible data word value is mapped to a unique “code

word”. A fault changes a valid code word to an invalid one - which can
be detected.

10/25/2007 EECS 150, Fa07, Lec18-error 8

Correcting Code Concept

• Detection: bit pattern fails codeword check
• Correction: map to nearest valid code word

Space of possible bit patterns (2N)

Sparse population of code words (2M << 2N)

- with identifiable signature

Error changes bit pattern to

non-code

10/25/2007 EECS 150, Fa07, Lec18-error 9

Simple Error Detection Coding: Parity

• Each data value, before it is
written to memory is “tagged”
with an extra bit to force the
stored word to have even
parity:

• Each word, as it is read from
memory is “checked” by
finding its parity (including
the parity bit).

b7b6b5b4b3b2b1b0p

+

b7b6b5b4b3b2b1b0p

+
c

• A non-zero parity indicates an error occurred:
– two errors (on different bits) is not detected (nor any even number of errors)
– odd numbers of errors are detected.

• What is the probability of multiple simultaneous errors?

10/25/2007 EECS 150, Fa07, Lec18-error 10

1-cube
X

0 1

Recall: Boolean cubes

• Neighbors differs by one bit
• The Hamming Distance between two values is the number

of bits that must be changed to convert one into the other.
• Parity – code words have minimum distance > 1

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111

10/25/2007 EECS 150, Fa07, Lec18-error 11

Single Error Detection
• N information bits + 1 parity bit

– 2N code words with minimum distance 2.

• What if we added another parity bit on the N+1
bits?

– min-distance-3 code => detects double bit errors

• What do you do if an error is detected?
• What would you need to know to correct the

error?

10/25/2007 EECS 150, Fa07, Lec18-error 12

Error correction
• When we receive an non code word, we correct the error by

locating the nearest code word
– Extremely likely to have been the one that was transmitted

• Example: distance 3 code => single error will produce a
value at distance 1 from the original and distance 2 or
greater from all the rest.

• 2c+1 code can correct errors up to c bits
• 2c+d+1 code can correct errors up to c bits and detect

errors in up to d additional bits
• SECDED most common

4-cube

W
X

Y
Z

0000

1111

1000

0111

10/25/2007 EECS 150, Fa07, Lec18-error 13

SECDED idea

• Add enough parity bits that with a single error the
parity sequence gives the “address” of the bit
that flipped!

• Add one more bit for parity of the whole thing
• How many bits does it take

10/25/2007 EECS 150, Fa07, Lec18-error 14

Hamming Error Correcting Code
• Use more parity bits to pinpoint

bit(s) in error, so they can be
corrected.

• Example: Single error correction
(SEC) on 4-bit data

– use 3 parity bits, with 4-data bits
results in 7-bit code word

– 3 parity bits sufficient to identify any
one of 7 code word bits

– overlap the assignment of parity bits
so that a single error in the 7-bit work
can be corrected

• Procedure: group parity bits so
they correspond to subsets of the
7 bits:

– p1 protects bits 1,3,5,7 (bit 1 is on)
– p2 protects bits 2,3,6,7 (bit 2 is on)
– p3 protects bits 4,5,6,7 (bit 3 is on)

1 2 3 4 5 6 7
p1 p2 d1 p3 d2 d3 d4

Bit position number
001 = 110

011 = 310

101 = 510

111 = 710

010 = 210

011 = 310

110 = 610

111 = 710

100 = 410

101 = 510

110 = 610

111 = 710

p1

p2

p3

Note:
number bits
from left to
right.

10/25/2007 EECS 150, Fa07, Lec18-error 15

Example: 8 bit SEC

• Takes four parity bits
– In power of 2 positions

• Rest are the data bits
• Bits with i in their address feed into parity calculation for pi
• What to do with bit 0?

p1 p2 p3 p4

1 2 3 4 5 6 7 8 9 10 11 12

d1 d2 d3 d4 d5 d6 d7 d8

+

10/25/2007 EECS 150, Fa07, Lec18-error 16

Hamming Code Example
• Example: c = c3c2c1= 101

– error in 4,5,6, or 7 (by c3=1)
– error in 1,3,5, or 7 (by c1=1)
– no error in 2, 3, 6, or 7 (by c2=0)

• Therefore error must be in bit 5.
• Note the check bits point to 5

• By our clever positioning and
assignment of parity bits, the
check bits always address the
position of the error!

• c=000 indicates no error
– eight possibilities

1 2 3 4 5 6 7
p1 p2 d1 p3 d2 d3 d4

– Note: parity bits occupy power-of-
two bit positions in code-word.

– On writing to memory:
» parity bits are assigned to force

even parity over their respective
groups.

– On reading from memory:
» check bits (c3,c2,c1) are

generated by finding the parity
of the group and its parity bit. If
an error occurred in a group, the
corresponding check bit will be
1, if no error the check bit will
be 0.

» check bits (c3,c2,c1) form
the position of the bit in
error.

10/25/2007 EECS 150, Fa07, Lec18-error 17

Interactive Quiz

• You receive:

–1111110
–0000010
–1010010

• What is the correct value?

1 2 3 4 5 6 7 positions

001 010 011 100 101 110 111

P1 P2 d1 P3 d2 d3 d4 role

Position of error = C3C2C1

Where Ci is parity of group i

10/25/2007 EECS 150, Fa07, Lec18-error 18

Hamming Error Correcting Code
• Overhead involved in single

error correction code:
– let p be the total number of parity

bits and d the number of data bits
in a p + d bit word.

– If p error correction bits are to
point to the error bit (p + d cases)
plus indicate that no error exists
(1 case), we need:

2p >= p + d + 1,
thus p >= log(p + d + 1)
for large d, p approaches log(d)

8 data => 4 parity
16 data => 5 parity
32 data => 6 parity
64 data => 7 parity

• Adding on extra parity bit covering
the entire word can provide double
error detection
1 2 3 4 5 6 7 8
p1 p2 d1 p3 d2 d3 d4 p4

• On reading the C bits are computed
(as usual) plus the parity over the
entire word, P:

C=0 P=0, no error
C!=0 P=1, correctable single error
C!=0 P=0, a double error occurred
C=0 P=1, an error occurred in p4 bit

Typical modern codes in DRAM memory systems:
64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).

10/25/2007 EECS 150, Fa07, Lec18-error 19

Announcements

• Reading
– http://en.wikipedia.org/wiki/Hamming_code
– XILINX IEEE 802.3 Cyclic Redundancy Check (pages 1-3)

• Optional
– http://www.ross.net/crc/download/crc_v3.txt

10/25/2007 EECS 150, Fa07, Lec18-error 20

Concept: Redundant Check
• Send a message M and a “check” word C
• Simple function on <M,C> to determine if both

received correctly (with high probability)
• Example: XOR all the bytes in M and append the

“checksum” byte, C, at the end
– Receiver XORs <M,C>
– What should result be?
– What errors are caught?

bit i is XOR of ith bit of each byte

10/25/2007 EECS 150, Fa07, Lec18-error 21

Example: TCP Checksum

Application
(HTTP,FTP, DNS)

Transport
(TCP, UDP)
Network

(IP)

Data Link

(Ethernet, 802.11b)

Physical
1

2

3

4

7

TCP Packet Format

• TCP Checksum a 16-bit checksum, consisting of the
one's complement of the one's complement sum of the
contents of the TCP segment header and data, is
computed by a sender, and included in a segment
transmission. (note end-around carry)

• Summing all the words, including the checksum word,
should yield zero

10/25/2007 EECS 150, Fa07, Lec18-error 22

Detecting burst errors
• In a network link or a magnetic disk, the failure

that causes and errors often causes a burst of
errors

– Wipes a sequence of bytes

• What can we do to detect such burst errors?

10/25/2007 EECS 150, Fa07, Lec18-error 23

Example: Ethernet CRC-32

Application
(HTTP,FTP, DNS)

Transport
(TCP, UDP)
Network

(IP)

Data Link

(Ethernet, 802.11b)

Physical
1

2

3

4

7

10/25/2007 EECS 150, Fa07, Lec18-error 24

Linear Feedback Shift Registers (LFSRs)
• These are n-bit counters exhibiting pseudo-random behavior.
• Built from simple shift-registers with a small number of xor

gates.
• Used for:

– random number generation
– counters
– error checking and correction

• Advantages:
– very little hardware
– high speed operation

• Example 4-bit LFSR:

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

10/25/2007 EECS 150, Fa07, Lec18-error 25

4-bit LFSR

• Circuit counts through 24-1 different
non-zero bit patterns.

• Left most bit determines shiftl or
more complex operation

• Can build a similar circuit with any
number of FFs, may need more xor
gates.

• In general, with n flip-flops, 2n-1
different non-zero bit patterns.

• (Intuitively, this is a counter that
wraps around many times and in a
strange way.)

 0 0 0 1 0
xor 0 0 0 0 0
 0 0 0 1 0 0
 xor 0 0 0 0 0
 0 0 1 0 0 0
 xor 0 0 0 0 0
 0 1 0 0 0 0
 xor 1 0 0 1 1
 0 0 0 1 1 0
 xor 0 0 0 0 0
 0 0 1 1 0 0
 xor 0 0 0 0 0
 0 1 1 0 0 0
 xor 1 0 0 1 1
 0 1 0 1 1

Q4 Q3 Q2 Q1

0001
0010
0100
1000
0011
0110
1100
1011
0101
1010
0111
1110
1111
1101
1001
0001

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

10/25/2007 EECS 150, Fa07, Lec18-error 26

Applications of LFSRs
• Performance:

– In general, xors are only ever 2-input and never
connect in series.

– Therefore the minimum clock period for these
circuits is:

T > T2-input-xor + clock overhead
– Very little latency, and independent of n!

• This can be used as a fast counter, if the
particular sequence of count values is
not important.

– Example: micro-code micro-pc

• Can be used as a random
number generator.

– Sequence is a pseudo-
random sequence:

» numbers appear in a
random sequence

» repeats every 2n-1
patterns

– Random numbers useful in:
» computer graphics
» cryptography
» automatic testing

• Used for error detection
and correction

» CRC (cyclic redundancy
codes)

» ethernet uses them

10/25/2007 EECS 150, Fa07, Lec18-error 27

CRC concept
• I have a msg polynomial M(x) of degree m
• We both have a generator poly G(x) of degree m
• Let r(x) = remainder of M(x) xn / G(x)

– M(x) xn = G(x)p(x) + r(x)
– r(x) is of degree n

• What is (M(x) xn – r(x)) / G(x) ?

• So I send you M(x) xn – r(x)
– m+n degree polynomial
– You divide by G(x) to check
– M(x) is just the m most signficant coefficients, r(x) the lower m

• n-bit Message is viewed as coefficients of n-degree
polynomial over binary numbers

n bits of zero at the end

tack on n bits of remainder

Instead of the zeros

10/25/2007 EECS 150, Fa07, Lec18-error 28

Galois Fields - the theory behind LFSRs
• LFSR circuits performs

multiplication on a field.
• A field is defined as a set with

the following:
– two operations defined on it:

» “addition” and “multiplication”
– closed under these operations
– associative and distributive laws

hold
– additive and multiplicative identity

elements
– additive inverse for every element
– multiplicative inverse for every

non-zero element

• Example fields:
– set of rational numbers
– set of real numbers
– set of integers is not a field

(why?)
• Finite fields are called

Galois fields.
• Example:

– Binary numbers 0,1 with XOR
as “addition” and AND as
“multiplication”.

– Called GF(2).

– 0+1 = 1
– 1+1 = 0
– 0-1 = ?
– 1-1 = ?

10/25/2007 EECS 150, Fa07, Lec18-error 29

Galois Fields - The theory behind LFSRs
• Consider polynomials whose coefficients come from GF(2).
• Each term of the form xn is either present or absent.
• Examples: 0, 1, x, x2, and x7 + x6 + 1

= 1·x7 + 1· x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 0 · x1 + 1· x0

• With addition and multiplication these form a field:
• “Add”: XOR each element individually with no carry:

x4 + x3 + + x + 1
+ x4 + + x2 + x

x3 + x2 + 1
• “Multiply”: multiplying by xn is like shifting to the left.

x2 + x + 1
× x + 1

x2 + x + 1
x3 + x2 + x
x3 + 1

10/25/2007 EECS 150, Fa07, Lec18-error 30

So what about division (mod)
x4 + x2

x
= x3 + x with remainder 0

x4 + x2 + 1
X + 1

= x3 + x2 with remainder 1

x4 + 0x3 + x2 + 0x + 1X + 1

x3

x4 + x3

x3 + x2

+ x2

x3 + x2

0x2 + 0x

+ 0x

0x + 1

+ 0

Remainder 1

10/25/2007 EECS 150, Fa07, Lec18-error 31

Polynomial division

• When MSB is zero, just
shift left, bringing in next
bit

• When MSB is 1, XOR with
divisor and shiftl

1 0 1 1 0 0 1 0 0 0 01 0 0 1 1

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

serial_in

0 0 0 0

1 0 0 1 1

0 0 1 0 1

1

0 1 0 1 0

0

1 0 1 0 1
1 0 0 1 1

1

0 0 1 0 0

10/25/2007 EECS 150, Fa07, Lec18-error 32

CRC encoding

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

serial_in
1 0 1 1 0 0 1 0 0 0 0

0 0 0 0

0 0 0 1 0 1 1 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0 1 0 0 0 0
0 1 0 1 1 0 0 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0

1 0 1 1 0 0 1 1 0 1 0

Message sent:

1 1 0 0 0 0 0
1 0 1 1 0 0
0 1 0 1 0
1 0 1 0

10/25/2007 EECS 150, Fa07, Lec18-error 33

CRC decoding

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

serial_in
1 0 1 1 0 0 1 1 0 1 0

0 0 0 0

0 0 0 1 0 1 1 0 0 1 1 0 1 0
0 0 1 0 1 1 0 0 1 1 0 1 0
0 1 0 1 1 0 0 1 1 0 1 0
1 0 1 1 0 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 0
1 0 1 0 1 1 0 1 0
0 1 1 0 1 0 1 0
1 1 0 1 0 1 0
1 0 0 1 1 0
0 0 0 0 0
0 0 0 0

10/25/2007 EECS 150, Fa07, Lec18-error 34

Galois Fields - The theory behind LFSRs
• These polynomials form a

Galois (finite) field if we take
the results of this
multiplication modulo a prime
polynomial p(x).

– A prime polynomial is one that
cannot be written as the product
of two non-trivial polynomials
q(x)r(x)

– Perform modulo operation by
subtracting a (polynomial)
multiple of p(x) from the result. If
the multiple is 1, this corresponds
to XOR-ing the result with p(x).

• For any degree, there exists at
least one prime polynomial.

• With it we can form GF(2n)

• Additionally, …
• Every Galois field has a primitive

element, α, such that all non-zero
elements of the field can be
expressed as a power of α. By
raising α to powers (modulo p(x)),
all non-zero field elements can be
formed.

• Certain choices of p(x) make the
simple polynomial x the primitive
element. These polynomials are
called primitive, and one exists
for every degree.

• For example, x4 + x + 1 is primitive.
So α = x is a primitive element and
successive powers of α will
generate all non-zero elements of
GF(16). Example on next slide.

10/25/2007 EECS 150, Fa07, Lec18-error 35

Galois Fields – Primitives
α0 = 1
α1 = x
α2 = x2

α3 = x3

α4 = x + 1
α5 = x2 + x
α6 = x3 + x2

α7 = x3 + x + 1
α8 = x2 + 1
α9 = x3 + x
α10 = x2 + x + 1
α11 = x3 + x2 + x
α12 = x3 + x2 + x + 1
α13 = x3 + x2 + 1
α14 = x3 + 1
α15 = 1

• Note this pattern of
coefficients matches the bits
from our 4-bit LFSR example.

• In general finding primitive
polynomials is difficult. Most
people just look them up in a
table, such as:

α4 = x4 mod x4 + x + 1
= x4 xor x4 + x + 1
= x + 1

10/25/2007 EECS 150, Fa07, Lec18-error 36

Primitive Polynomials
x2 + x +1
x3 + x +1
x4 + x +1
x5 + x2 +1
x6 + x +1
x7 + x3 +1
x8 + x4 + x3 + x2 +1
x9 + x4 +1
x10 + x3 +1
x11 + x2 +1

x12 + x6 + x4 + x +1
x13 + x4 + x3 + x +1
x14 + x10 + x6 + x +1
x15 + x +1
x16 + x12 + x3 + x +1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1

x22 + x +1
x23 + x5 +1
x24 + x7 + x2 + x +1
x25 + x3 +1
x26 + x6 + x2 + x +1
x27 + x5 + x2 + x +1
x28 + x3 + 1
x29 + x +1
x30 + x6 + x4 + x +1
x31 + x3 + 1
x32 + x7 + x6 + x2 +1Galois Field Hardware

Multiplication by x ⇔ shift left
Taking the result mod p(x) ⇔ XOR-ing with the coefficients of p(x)

when the most significant coefficient is 1.
Obtaining all 2n-1 non-zero ⇔ Shifting and XOR-ing 2n-1 times.
elements by evaluating xk

for k = 1, …, 2n-1

10/25/2007 EECS 150, Fa07, Lec18-error 37

Building an LFSR from a Primitive Poly
• For k-bit LFSR number the flip-flops with FF1 on the right.
• The feedback path comes from the Q output of the leftmost FF.
• Find the primitive polynomial of the form xk + … + 1.
• The x0 = 1 term corresponds to connecting the feedback directly to the D

input of FF 1.
• Each term of the form xn corresponds to connecting an xor between FF n

and n+1.
• 4-bit example, uses x4 + x + 1

– x4 ⇔ FF4’s Q output
– x ⇔ xor between FF1 and FF2
– 1 ⇔ FF1’s D input

• To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

Q DQ4Q DQ5Q DQ6Q DQ7

CLK

Q DQ3 Q DQ2 Q DQ1Q8 Q D

10/25/2007 EECS 150, Fa07, Lec18-error 38

Generating Polynomials
• CRC-16: G(x) = x16 + x15 + x2 + 1

– detects single and double bit errors
– All errors with an odd number of bits
– Burst errors of length 16 or less
– Most errors for longer bursts

• CRC-32: G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1
– Used in ethernet
– Also 32 bits of 1 added on front of the message

» Initialize the LFSR to all 1s

10/25/2007 EECS 150, Fa07, Lec18-error 39

Summary
• Concept of error coding

– Add a few extra bits (enlarges the space of values) that carry
information about all the bits

– Detect: Simple function to check of entire data+check received
correctly

» Small subset of the space of possible values
– Correct: Algorithm for locating nearest valid symbol

• Hamming codes
– Selective use of parity functions
– Distance + # bit flips
– Parity: XOR of the bits => single error detection
– SECDED

» databits+p+1 < 2p

• Cyclic Redundancy Checks
– Detect burst errors

