

EECS 150 - Components and Design Techniques for Digital Systems

Lec 18 – Error Coding

David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

> http://www.eecs.berkeley.edu/~culler http://inst.eecs.berkeley.edu/~cs150

Outline

- Errors and error models
- Parity and Hamming Codes (SECDED)
- Errors in Communications
- LFSRs
- Cyclic Redundancy Check (CRC)

10/25/2007

EECS 150, Fa07, Lec18-error

2

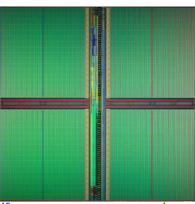
Our beautiful digital world....

- The real world has continuous electrical signals
- In the real world, electrons keep flowing
- In the real world, things take time
- We've designed circuits to create logical gates that behave like boolean operators
- We designed storage elements that hold their logical value
- We've developed a synchronous timing methodology so that values appear to change on clock edges
 - Acyclic combinational logic and storage elements
 - Clock cycle > worst propagation delay + setup

In the real world ... 📀 🛚

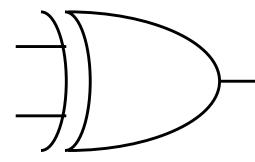
- __it happens !
- Alpha particles flip bits in memory
- Electrostatics zap wires
- Electromagnetic interference clobbers communication

• ...



The Challenge

• How do we design digital systems that behave correctly even in the presence of errors?



10/25/2007	EEGS 150, Faur, Lecto-error	5	

Error Correction Codes (ECC)

7

- Memory systems generate errors (accidentally flippedbits)
 - DRAMs store very little charge per bit
 - "Soft" errors occur occasionally when cells are struck by alpha particles or other environmental upsets.
 - Less frequently, "hard" errors can occur when chips permanently fail.
 - Problem gets worse as memories get denser and larger
- Where is "perfect" memory required?
 - servers, spacecraft/military computers, ebay, ...
- Memories are protected against failures with ECCs
- Extra bits are added to each data-word
 - $-\,$ used to detect and/or correct faults in the memory system
 - in general, each possible data word value is mapped to a unique "code word". A fault changes a valid code word to an invalid one - which can be detected.

10/25/2007

Definitions

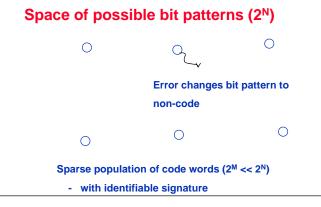
- An *error* in a digital system is the corruption of data from its correct value to some other value.
- An error is caused by a physical failure. – Temporary or permanent
- The effects of failures are predicted by *error models*.
- Example: independent error model
 - a single physical failure is assumed to affect only a single bit of data – a single error
 - Multiple failures may cause multiple errors
 - » Much less likely

EECS 150, Fa07, Lec18-error

Ø

6

Correcting Code Concept



- Detection: bit pattern fails codeword check
- Correction: map to nearest valid code word

Simple Error Detection Coding: Parity

- Each data value, before it is written to memory is "tagged" with an extra bit to force the stored word to have even parity:
 - b₇b₆b₅b₄b₃b₂b₁b₀p
- Each word, as it is read from memory is "checked" by finding its parity (including the parity bit).

b₇b₆b₅b₄b₃b₂b₁b₀p

- A non-zero parity indicates an error occurred:
 - two errors (on different bits) is not detected (nor any even number of errors)

•

- odd numbers of errors are detected.
- What is the probability of multiple simultaneous errors?

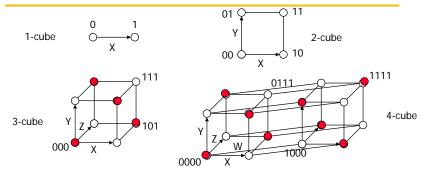
10/25/2007

EECS 150, Fa07, Lec18-error

Single Error Detection

- N information bits + 1 parity bit
 - -2^{N} code words with minimum distance 2.
- What if we added another parity bit on the N+1 bits?
 - min-distance-3 code => detects double bit errors
- What do you do if an error is detected?
- What would you need to know to correct the error?

Recall: Boolean cubes



- Neighbors differs by one bit
- The Hamming Distance between two values is the number of bits that must be changed to convert one into the other.
- Parity code words have minimum distance > 1

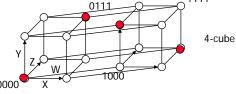
```
10/25/2007
```

EECS 150, Fa07, Lec18-error

10

Error correction

- When we receive an non code word, we correct the error by locating the *nearest* code word
 - Extremely likely to have been the one that was transmitted
- Example: distance 3 code => single error will produce a value at distance 1 from the original and distance 2 or greater from all the rest.



- 2c+1 code can correct errors up to c bits
- 2c+d+1 code can correct errors up to c bits and detect errors in up to d additional bits
- SECDED most common

10/25/2007

11

9

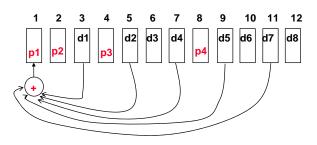
EECS 150, Fa07, Lec18-error

SECDED idea

- Add enough parity bits that with a single error the parity sequence gives the "address" of the bit that flipped!
- · Add one more bit for parity of the whole thing
- · How many bits does it take

10/25/2007	EECS 150, Fa07, Lec18-error	13

Example: 8 bit SEC



- Takes four parity bits
 - In power of 2 positions
- · Rest are the data bits
- · Bits with i in their address feed into parity calculation for pi
- What to do with bit 0?

Hamming Error Correcting Code

- Use more parity bits to pinpoint bit(s) in error, so they can be corrected.
- Example: Single error correction (SEC) on 4-bit data
 - use 3 parity bits, with 4-data bits results in 7-bit code word
 - 3 parity bits sufficient to identify any one of 7 code word bits
 - overlap the assignment of parity bits so that a single error in the 7-bit work can be corrected
- Procedure: group parity bits so they correspond to subsets of the 7 bits:
 - p₁ protects bits 1,3,5,7 (bit 1 is on)
 - p₂ protects bits 2,3,6,7 (bit 2 is on)
 - p₃ protects bits 4,5,6,7 (bit 3 is on)
 - 10/25/2007

EECS 150, Fa07, Lec18-error

14

Hamming Code Example

1 2 3 4 5 6 7

 $p_1 \ p_2 \ d_1 \ p_3 \ d_2 \ d_3 \ d_4$

- Note: parity bits occupy power-oftwo bit positions in code-word.
- On writing to memory:
 - » parity bits are assigned to force even parity over their respective groups.
- On reading from memory:
 - » check bits (c₃,c₂,c₁) are generated by finding the parity of the group and its parity bit. If an error occurred in a group, the corresponding check bit will be 1, if no error the check bit will be 0.
 - » check bits (c₃,c₂,c₁) form the position of the bit in error.

• Example: $c = c_3 c_2 c_1 = 101$

1 2 3 4 5 6 7

 $\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{d}_1 \ \mathbf{p}_3 \ \mathbf{d}_2 \ \mathbf{d}_3 \ \mathbf{d}_4$

Bit position number

 $001 = 1_{10}$

 $011 = 3_{10}$

 $101 = 5_{10}$

 $111 = 7_{10}$

 $010 = 2_{10}$

 $011 = 3_{10}$

 $110 = 6_{10}$

111 = 7₁₀

 $100 = 4_{10}$

101 = 5₁₀

 $110 = 6_{10}$

 $111 = 7_{10}$

Note:

right.

 p_1

 \mathbf{p}_2

 p_3

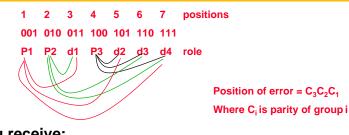
number bits

from left to

- error in 4,5,6, or 7 (by c₃=1)
- error in 1,3,5, or 7 (by c₁=1)
- no error in 2, 3, 6, or 7 (by c₂=0)
- Therefore error must be in bit 5.
- Note the check bits point to 5
- By our clever positioning and assignment of parity bits, the check bits always address the position of the error!
- c=000 indicates no error
 eight possibilities

10/25/2007

Interactive Quiz



- You receive:
 - -1111110
 - -0000010
 - -1010010
- What is the correct value?

10	12.5	/2.0	07
10	431	40	07

EECS 150, Fa07, Lec18-error

17

Announcements

- Reading
 - http://en.wikipedia.org/wiki/Hamming_code
 - XILINX IEEE 802.3 Cyclic Redundancy Check (pages 1-3)
- Optional
 - http://www.ross.net/crc/download/crc_v3.txt

Hamming Error Correcting Code

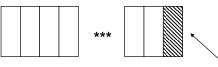
- Overhead involved in single error correction code:
 - let p be the total number of parity bits and d the number of data bits in a p + d bit word.
 - If p error correction bits are to point to the error bit (p + d cases) plus indicate that no error exists (1 case), we need:
 - $2^p >= p + d + 1,$
 - thus $p \ge \log(p + d + 1)$
 - for large *d*, *p* approaches log(*d*)
 - 8 data => 4 parity
 - 16 data => 5 parity
 - 32 data => 6 parity 64 data => 7 parity

- Adding on extra parity bit covering the entire word can provide double error detection
- On reading the C bits are computed (as usual) plus the parity over the entire word, P:
- C=0 P=0, no error C!=0 P=1, correctable single error C!=0 P=0, a double error occurred C=0 P=1, an error occurred in p_4 bit
- Typical modern codes in DRAM memory systems:
 - 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).
- 10/25/2007
- EECS 150, Fa07, Lec18-error

18

Concept: Redundant Check

- Send a message M and a "check" word C
- Simple function on <M,C> to determine if both received correctly (with high probability)
- Example: XOR all the bytes in M and append the "checksum" byte, C, at the end
 - Receiver XORs <M,C>
 - What should result be?
 - What errors are caught?

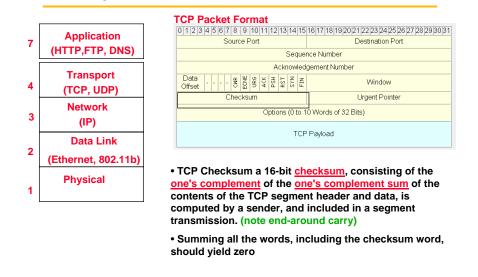


bit i is XOR of ith bit of each byte

10/25/2007

EECS 150, Fa07, Lec18-error

Example: TCP Checksum



10/25/2007

EECS 150, Fa07, Lec18-error

21

Detecting burst errors

- In a network link or a magnetic disk, the failure that causes and errors often causes a burst of errors
 - Wipes a sequence of bytes
- What can we do to detect such burst errors?

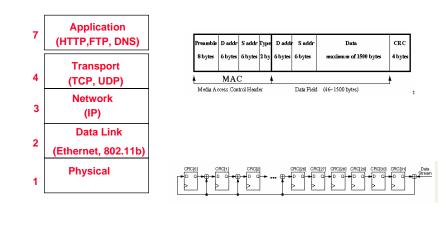
10/25/2007

EECS 150, Fa07, Lec18-error

22

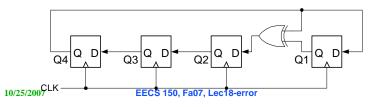
24

Example: Ethernet CRC-32



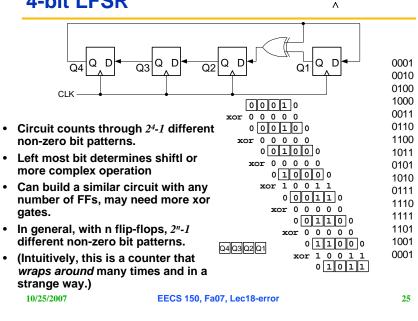
Linear Feedback Shift Registers (LFSRs)

- These are n-bit counters exhibiting *pseudo-random* behavior.
- Built from simple shift-registers with a small number of xor gates.
- Used for:
 - random number generation
 - counters
 - error checking and correction
- Advantages:
 - very little hardware
 - high speed operation
- Example 4-bit LFSR:



10/25/2007

4-bit LFSR



CRC concept

- I have a msg polynomial M(x) of degree m
- We both have a generator poly G(x) of degree m
- Let $r(x) = remainder of M(x) x^n / G(x)$
 - $M(x) x^{n} = G(x)p(x) + r(x)$
 - r(x) is of degree n
- What is (M(x) xⁿ r(x)) / G(x) ?

n bits of zero at the end

tack on n bits of remainder

Instead of the zeros

- So I send you M(x) xⁿ r(x)
 - m+n degree polynomial
 - You divide by G(x) to check
 - -M(x) is just the m most significant coefficients, r(x) the lower m
- n-bit Message is viewed as coefficients of n-degree polynomial over binary numbers

Applications of LFSRs

Performance:

- In general, xors are only ever 2-input and never connect in series.
- Therefore the minimum clock period for these circuits is:
 - T > T_{2-input-xor} + clock overhead
- Very little latency, and independent of n!
- This can be used as a fast counter, if the particular sequence of count values is not important.
 - Example: micro-code micro-pc

- Can be used as a random number generator.
 - Sequence is a pseudorandom sequence:
 - » numbers appear in a random sequence
 - » repeats every 2ⁿ-1 patterns
 - Random numbers useful in:
 - » computer graphics
 - » cryptography
 - » automatic testing
- Used for error detection and correction
 - » CRC (cyclic redundancy codes)

» ethernet uses them

```
10/25/2007
```

EECS 150, Fa07, Lec18-error

Galois Fields - the theory behind LFSRs

- LFSR circuits performs multiplication on a *field*.
- A field is defined as a set with the following:
 - two operations defined on it: » "addition" and "multiplication" •
 - closed under these operations
 - associative and distributive laws hold
 - additive and multiplicative identity elements
 - additive inverse for every element
 - multiplicative inverse for every non-zero element

- Example fields: set of rational numbers
 - set of real numbers
 - set of integers is not a field (why?)
- Finite fields are called Galois fields.
- Example:
 - Binary numbers 0.1 with XOR as "addition" and AND as "multiplication".
 - Called GF(2).
 - 0+1 = 1
 - -1+1=0
 - 0-1 = ?
 - 1-1 = ?

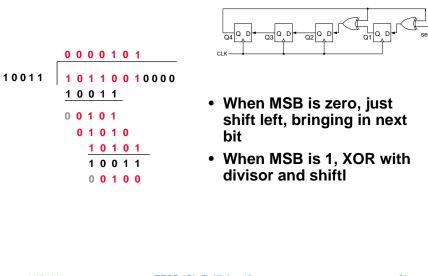
Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form x^n is either present or absent. •
- Examples: $0, 1, x, x^2$, and $x^7 + x^6 + 1$ $= 1 \cdot x^7 + 1 \cdot x^6 + 0 \cdot x^5 + 0 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2 + 0 \cdot x^1 + 1 \cdot x^0$
- With addition and multiplication these form a field:
- "Add": XOR each element individually with no carry:

 $x^4 + x^3 + x + 1$ $+ x^4 + + x^2 + x$ $x^3 + x^2 + 1$

• "Multiply": multiplying by *x*^{*n*} is like shifting to the left.

Polynomial division



So what about division (mod)

$$\frac{x^{4} + x^{2}}{x} = x^{3} + x \text{ with remainder 0}$$

$$x^{4} + \frac{x^{2} + 1}{x + 1} = x^{3} + x^{2} \text{ with remainder 1}$$

$$x^{3} + x^{2} + 0x + 0$$

$$x + 1 \int \frac{x^{4} + 0x^{3} + x^{2} + 0x + 1}{x^{4} + 0x^{3} + x^{2} + 0x + 1}$$

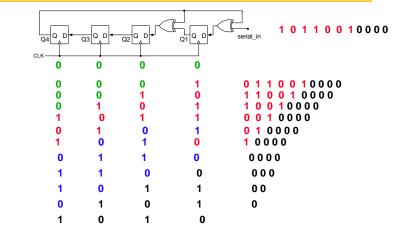
$$x^{3} + x^{2}$$

$$x^{3} + x^{2}$$

$$0x^{2} + 0x$$

$$0x + 1$$
10/25/2007 EECS 150, Fa07, Lec18-error 30

CRC encoding



Message sent:

10110011010

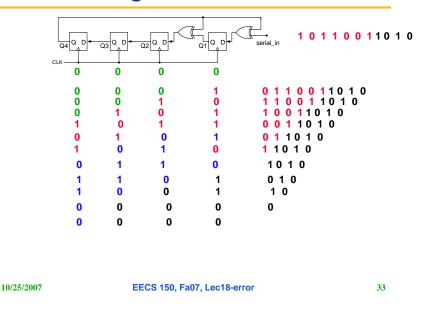
10/25/2007

EECS 150, Fa07, Lec18-error

31

29

CRC decoding



Galois Fields - The theory behind LFSRs

- These polynomials form a Galois (finite) field if we take the results of this multiplication modulo a prime polynomial p(x).
 - A prime polynomial is one that cannot be written as the product of two non-trivial polynomials q(x)r(x)
 - Perform modulo operation by subtracting a (polynomial) multiple of p(x) from the result. If the multiple is 1, this corresponds to XOR-ing the result with p(x).
- For any degree, there exists at least one prime polynomial.

 $x^{18} + x^7 + 1$

 $x^{20} + x^3 + 1$

 $x^{21} + x^2 + 1$

 $x^{19} + x^5 + x^2 + x + 1$

Hardware

⇔ shift left

Taking the result mod $p(x) \Leftrightarrow XOR$ -ing with the coefficients of p(x)

EECS 150, Fa07, Lec18-error

Obtaining all 2^{n} -1 non-zero \Leftrightarrow Shifting and XOR-ing 2^{n} -1 times.

• With it we can form $GF(2^n)$

- Additionally, ...
- Every Galois field has a primitive element, a, such that all non-zero elements of the field can be expressed as a power of α . By raising α to powers (modulo p(x)), all non-zero field elements can be formed.
- Certain choices of p(x) make the simple polynomial x the primitive element. These polynomials are called primitive, and one exists for every degree.
- For example, $x^4 + x + 1$ is primitive. So $\alpha = x$ is a primitive element and successive powers of α will generate all non-zero elements of GF(16). Example on next slide.

 $x^{28} + x^3 + 1$

 $x^{29} + x + 1$

 $x^{31} + x^3 + 1$

when the most significant coefficient is 1.

 $x^{30} + x^6 + x^4 + x + 1$

 $x^{32} + x^7 + x^6 + x^2 + 1$

36

EECS 150, Fa07, Lec18-error	33	10/25/2007	EECS 150, Fa07, Lec18-erro	or 34	
Fields – Primitives		Primitive	Polynomials		
$= 1$ $= x$ $= x^{2}$ $= x^{3}$ $= x^{2} + 1$ $= x^{2} + x$ • Note this pattern of coefficients matches th from our 4-bit LFSR ex		$x^{2} + x + 1$ $x^{3} + x + 1$ $x^{4} + x + 1$ $x^{5} + x^{2} + 1$ $x^{6} + x + 1$ $x^{7} + x^{3} + 1$ $x^{8} + x^{4} + x^{3} + x^{2} + 1$	$x^{12} + x^{6} + x^{4} + x + 1$ $x^{13} + x^{4} + x^{3} + x + 1$ $x^{14} + x^{10} + x^{6} + x + 1$ $x^{15} + x + 1$ $x^{16} + x^{12} + x^{3} + x + 1$ $x^{17} + x^{3} + 1$	$x^{22} + x + 1$ $x^{23} + x^{5} + 1$ $x^{24} + x^{7} + x^{2} + x + 1$ $x^{25} + x^{3} + 1$ $x^{26} + x^{6} + x^{2} + x + 1$ $x^{27} + x^{5} + x^{2} + x + 1$	

 $x^{9} + x^{4} + 1$

 $x^{10} + x^3 + 1$

 $x^{11} + x^2 + 1$

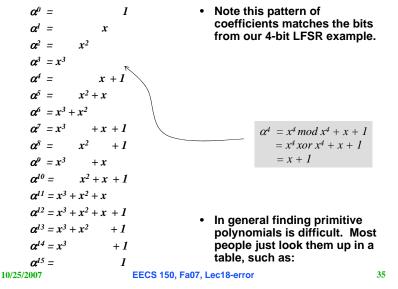
Galois Field

for $k = 0/25/200/2^n - 1$

Multiplication by x

elements by evaluating x^k

Galois



Building an LFSR from a Primitive Poly

Ø

39

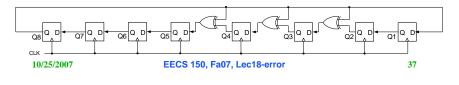
- For *k*-bit LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF.
- Find the primitive polynomial of the form $x^k + ... + 1$.
- The x⁰ = 1 term corresponds to connecting the feedback directly to the D input of FF 1.
- Each term of the form x^n corresponds to connecting an xor between FF n and n+1.
- 4-bit example, uses $x^4 + x + 1$

- $x \Leftrightarrow xor$ between FF1 and FF2

- $x^4 \Leftrightarrow FF4$'s Q output

– 1 ⇔ FF1's D input

- To build an 8-bit LFSR, use the primitive polynomial $x^8 + x^4 + x^3 + x^2 + 1$ and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.



Summary

- Concept of error coding
 - Add a few extra bits (enlarges the space of values) that carry information about all the bits
 - Detect: Simple function to check of entire data+check received correctly
 - » Small subset of the space of possible values
 - Correct: Algorithm for locating nearest valid symbol
- Hamming codes
 - Selective use of parity functions
 - Distance + # bit flips
 - Parity: XOR of the bits => single error detection
 - SECDED
 - » databits+p+1 < 2^p
- Cyclic Redundancy Checks
 - _ Detect burst errors

Generating Polynomials

- CRC-16: $G(x) = x^{16} + x^{15} + x^2 + 1$
 - detects single and double bit errors
 - All errors with an odd number of bits
 - Burst errors of length 16 or less
 - Most errors for longer bursts
- CRC-32: $G(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
 - Used in ethernet
 - Also 32 bits of 1 added on front of the message
 - » Initialize the LFSR to all 1s

10/25/2007

EECS 150, Fa07, Lec18-error