EECS 150 - Components and Design Techniques for Digital Systems
Lec 19 - Fixed Point \& Floating Point Arithmetic

10/23/2007

David Culler

Electrical Engineering and Computer Sciences
University of California, Berkeley
http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

Outline

- Review of Integer Arithmetic
- Fixed Point
- IEEE Floating Point Specification
- Implementing FP Arithmetic (interactive)

Representing Numbers

- What can be represented in \mathbf{N} bits?
-2^{N} distinct symbols => values

- Unsigned	0	to	$2^{\mathrm{N}}-1$
-2 s Complement	$-2^{(\mathrm{N}-1)}$	to	$2^{(\mathrm{N}-1)}-1$
- ASCII	$-10^{\left(\mathrm{N}^{2} /-2\right)}-1$	to	$10^{(\mathrm{N} / 8-1)}-1$

- But, what about?
- Very large numbers? (seconds/century) $3,155,760,000_{\text {ten }} \quad\left(3.15576_{\text {ten }} \times 10^{9}\right)$
- Very small numbers? (secs/ nanosecond) $0.000000001_{\text {ten }}\left(1.0_{\text {ten }} \times 10^{-9}\right)$
- Bohr radius
$\Rightarrow 0.0000000000529177_{10} \mathrm{~m}\left(5.29177_{10} \times 10^{-11}\right)$
- Rationals $\quad 2 / 3 \quad(0.666666666 \ldots)$
- Irrationals $\quad 2^{1 / 2} \quad(1.414213562373 \ldots)$
- Transcendentals e (2.718...), п (3.141...)

Recall: Digital Number Systems

- Positional notation
$-D_{n-1} D_{n-2} \ldots D_{0}$ represents $D_{n-1} B^{n-1}+D_{n-2} B^{n-2}+\ldots+D_{0} B^{0}$

$$
\text { where } D_{i} \in\{0, \ldots, B-1\}
$$

- 2s Complement
$-D_{n-1} D_{n-2} \ldots D_{0}$ represents: $-D_{n-1} 2^{n-1}+D_{n-2} 2^{n-2}+\ldots+D_{0} 2^{0}$
- MSB has negative weight
- Binary Point is effectively at the far right of the word

Representing Fractional Numbers

- Fixed-Point Positional notation
$-D_{n-k-1} D_{n-k-2} \ldots D_{0 . \ldots} D_{-k}$ represents $D_{n-k-1} B^{n-k-1}+D_{n-2} B^{B-2}+\ldots+D_{-k} B^{-k}$ where $D_{i} \in\{0, \ldots, B-1\}$
- 2s Complement
$-D_{n-k-1} D_{n-2} \ldots D_{-k}$ represents: $-D_{n-k-1} 2^{n-k-1}+D_{n-2} 2^{n-2}+\ldots+D_{-k} 2^{-k}$

How do you represent...

Scientific Notation

- Very big numbers - with a few characters?
- Very small numbers - with a few characters?

Circuits for Fixed-Point Arithmetic

- Adders?
- identical circuit

- Subtractors?
- Multipliers?
- Position of the binary point just as you learned by hand
- Mult two n-bit numbers yields $2 n$-bit result with binary point determined by binary point of the inputs
$-2-k * 2-m=2^{-k-m}$

- Normalized form: no leadings 0s, exactly one digit to left of decimal point
- Alternatives to representing $1 / 1,000,000,000$
- Normalized:
1.0×10^{-9}
- Not normalized:
$0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (in Binary)

mantissa

- Computer arithmetic that directly supports this kind of representation called floating point, because it represents numbers where the binary point is not in a fixed position, but "floats".
- Declared in C as float
- Floats are more like "reals" than integers, but they are not. They have a finite representation.

UCB's "Father" of IEEE Floating point

IEEE Standard 754 for Binary Floating-Point Arithmetic.

www.cs.berkeley.edu/~wkahan/ .../ieee754status/754story.html

IEEE Floating Point Representation

Which 2^{N} numbers can you represent?

- Normal format: +1.xxxxxxxxxxx two $^{*} 2^{\text {yyyy }}{ }_{\text {two }}$
- Multiple of Word Size (32 bits)
3130

	Exponent	
1 bit 8 bits	Significand	

- $(-1)^{\text {S }} \times$ (1. Significand) $\times \mathbf{2}_{\text {Hidden } 1}^{\text {(Exponent-127) }}$ excess 127
- Single precision represents numbers as small as 2.0×10^{-38} to as large as 2.0×10^{38}
- 8 million equally spaced values, between ...
- 1 and 2
--1.0 and $-0.5\left(-2^{0}\right.$ and $\left.-2^{-1}\right)$
-2^{-125} and 2^{-12}
-2^{124} and 2^{125}
Each successive power of two
- Which integers are represented exactly?

Which are not?

- Which fractions?

Where is there a gap?
sign exponenent (\{a bits)

Floating Point Representation

- What if result too large (in magnitude)?
(> $2.0 \times 10^{38},<-2.0 \times 10^{38}$)
- Overflow! \Rightarrow Exponent larger than represented in 8-bit Exponent field
- What if result too small (in magnitude)?
($>0 \&<2.0 \times 10^{-38},<0 \&>-2.0 \times 10^{-38}$)
Underflow! \Rightarrow Negative exponent larger than represented in 8-bit Exponent field
- What would help reduce chances of overflow and/or underflow?

Denorms

- Problem: if $A \neq B$ then is $A-B \neq 0$?
- gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:
$b=1.000 \ldots \ldots 1_{2} * 2^{-126}$
$=\left(1+0.00 \ldots 1_{2}\right){ }^{*} 2^{-126}$
$=\left(1+2^{-23}\right) * 2^{-126}$
$=2^{-126}+2^{-149}$
a-0 $=2^{-126}$
b-a $=\mathbf{2}^{-149}$

Denorms

- Solution:
- Denormalized number: no (implied) leading 1, implicit exponent $=-126$.
- Exponent = 0, Significand nonzero
- Smallest representable pos num:

$$
a=2^{-149}
$$

- Second smallest representable pos num:

$$
\text { b }=2^{-148}
$$

- What do you give up for $A \neq B$ => $A-B \neq 0$?
- Multiplicative inverse: If A exists 1/A exists

$$
-\boldsymbol{- \infty} \underset{\mathbf{0}}{\stackrel{-1}{4}}
$$

Announcements

- Readings: http://en.wikipedia.org/wiki/IEEE_754
- Labs
- Free week inserted now, remove one check point, back off the options at the end
- Design review will stay on schedule
» More time between review and implementation
» Take the prep for design review seriously
- Discuss Thurs discussion
- Party Problem
- Lab 5 code walk through on Friday
- Mid term II on 11/1, review 10/30 at 8 pm

Special IEEE 754 Symbols: Infinity

- Overflow is not same as divide by zero
- IEEE 754 represents +/- infinity
- OK to do further computations with infinity e.g., X/0 > Y may be a valid comparison
- Most positive exponent reserved for infinity

Exponent	Significand		Object
$\mathbf{0}$	0	=>	0
0	nonzero	=>	denorm
$1-254$	anything	\Rightarrow	$+/-\mathrm{fl} . \mathrm{pt} \#$.
255	0	$=>$	$+/-\infty$
255	nonzero	=>	NaN

Examples

Type	Exponent	Significand	Value
Zero	00000000	00000000000000000000000	0.0
One	01111111	00000000000000000000000	1.0
Small denormalized number	00000000	00000000000000000000001	1.4×10^{-45}
Large denormalized number	00000000	11111111111111111111111	1.18×10^{-38}
Large normalized number	11111110	11111111111111111111111	3.4×10^{38}
Small normalized number	00000001	00000000000000000000000	1.18×10^{-38}
Infinity	11111111	00000000000000000000000	Infinity
NaN	11111111	non zero	NaN

Double Precision FP Representation

- Next Multiple of Word Size (64 bits)
3130

2019		
	Exponent	
1 bit	11 bits	
Significand (cont'd)		
32 bits		

- Double Precision (vs. Single Precision)
- C variable declared as double
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
- But primary advantage is greater accuracy due to larger significand

How do we do arithmetic on FP?

- Just like with scientific notation
- Addition
- Eg. $\quad 9.45 \times 10^{3}+6.93 \times 10^{2}$
- Shift mantissa so that have common exponent (unnormalize)
$-\quad 9.45 \times 10^{3}+0.693 \times 10^{3}$
- Add mantissas: $\quad 10.143 \times 10^{3}$
- Renormalize: $\quad 1.0143 \times 10^{4}$
- Round: $\quad 1.01 \times 10^{4}$
- IEEE rounding - as if had carried full precision and rounded at the last step
- Multiplication?

Let's build an FP function unit: mult

21

Let's build an FP function unit: mult

What is the multiplication algorithm?
-9.45×10^{3} * 6.93×10^{2}

Let's build a FP function unit: mult

What is the range of mantissas?

25

What is the range of mantissas?

Rounding

- Real numbers have "inifinite precision", FPs don't.
- When we perform arithmetic on FP numbers, we must round to fit the result in the significand field.

```
ign exponent(19 bits) traction (23 bits)
```


${ }_{3}$

IEEE FP behaves as if all internal operations were performed to full precision and then rounded at the end.

- Actually only carries 3 extra bits along the way
» Guard bit | Round bit | Sticky bit

IEEE FP Rounding Modes

- Round towards $+\infty$
- Decimal: $1.1 \rightarrow 1, \quad 1.9 \rightarrow 2, \quad 1.5 \rightarrow 2,-1.1 \rightarrow-1, \quad-1.9 \rightarrow-2, \quad-1.5 \rightarrow-1$
- Binary: $1.01 \rightarrow 1,1.11 \rightarrow 10,1.1 \rightarrow 10,-1.01 \rightarrow-1,-1.11 \rightarrow-10,-1.1 \rightarrow-1$,
- Bhat is the accumulated bias with a large number of operations?
- Round towards - ∞
- Decimal: $1.1 \rightarrow 1, \quad 1.9 \rightarrow 2, \quad 1.5 \rightarrow 1,-1.1 \rightarrow-1, \quad-1.9 \rightarrow-2, \quad-1.5 \rightarrow-2$,
- Binary: $1.01 \rightarrow 1,1.11 \rightarrow 10,1.1 \rightarrow 1,-1.01 \rightarrow-1,-1.11 \rightarrow-10,-1.1 \rightarrow-10$
- What is the accumulated bias with a large number of operations?
- Round Towards Zero - Truncate
- Decimal: $1.1 \rightarrow 1, \quad 1.9 \rightarrow 2, \quad 1.5 \rightarrow 1,-1.1 \rightarrow-1, \quad-1.9 \rightarrow-2, \quad-1.5 \rightarrow-1$,
- Binary: $1.01 \rightarrow 1,1.11 \rightarrow 10,1.1 \rightarrow 1,-1.01 \rightarrow-1,-1.11 \rightarrow-10,-1.1 \rightarrow-1$,
- What is the accumulated bias with a large number of operations?
- Round to even - Unbiased (default mode).
- Decimal: $1.1 \rightarrow 1, \quad 1.9 \rightarrow 2, \quad 1.5 \rightarrow 2,-1.1 \rightarrow-1, \quad-1.9 \rightarrow-2, \quad-1.5 \rightarrow-2,2.5 \rightarrow 2,-2.5 \rightarrow-2$
- Binary: $1.01 \rightarrow 1,1.11 \rightarrow 10,1.1 \rightarrow 10,-1.01 \rightarrow-1,-1.11 \rightarrow-10,-1.1 \rightarrow-1,10.1 \rightarrow 10,-10.1 \rightarrow-10$
- if the value is right on the borderline, we round to the nearest EVEN number
- This way, half the time we round up on tie, the other half time we round down

Basic FP Addition Algorithm

Let's build an FP function unit: add
For addition (or subtraction) of X to Y (assuming $X<Y$):
(1) Compute $D=\operatorname{Exp}_{Y}-\operatorname{Exp}_{X}$ (align binary point)
(2) Right shift $\left(1+\right.$ Sig $\left._{\mathrm{X}}\right) \mathrm{D}$ bits $\left.=>\left(1+\mathrm{Sig}_{\mathrm{X}}\right)^{*} \mathbf{2}^{(E x p X-E x p Y}\right)$
(3) Compute $\left(1+\right.$ Sig $\left._{x}\right){ }^{*} 2^{(\text {ExpX }- \text { ExpY })}+\left(1+\right.$ Sig $\left._{Y}\right)$

Normalize if necessary; continue until MS bit is 1
(4) Too small (e.g., 0.001xx...)
left shift result, decrement result exponent
(4') Too big (e.g., 101.1xx...)
right shift result, increment result exponent
(5) If result significand is 0 , set exponent to 0

Floating Point Fallacies: Add Associativity?

- $x=-1.5 \times 10^{38}, y=1.5 \times 10^{38}$, and $z=1.0$
- $x+(y+z)=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}+1.0\right)$

$$
=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}\right)=0.0
$$

- $(x+y)+z=\left(-1.5 \times 10^{38}+1.5 \times 10^{38}\right)+1.0$

$$
=(0.0)+1.0=1.0
$$

- Therefore, Floating Point add not associative!
-1.5×10^{38} is so much larger than 1.0
that $1.5 \times 10^{38}+1.0$ is still 1.5×10^{38}
- FI. Pt. result approximation of real result!

Floating Point Fallacy: Accuracy optional?

- July 1994: Intel discovers bug in Pentium - Occasionally affects bits 12-52 of D.P. divide
- Sept: Math Prof. discovers, put on WWW
- Nov: Front page trade paper, then NYTimes
- Intel: "several dozen people that this would affect. So far, we've only heard from one."
- Intel claims customers see 1 error/27000 years
- IBM claims 1 error/month, stops shipping
- Dec: Intel apologizes, replace chips $\$ 300 \mathrm{M}$
- Reputation? What responsibility to society?

Arithmetic Representation

- Position of binary point represents a trade-off of range vs precision
- Many digital designs operate in fixed point
» Very efficient, but need to know the behavior of the intended algorithms
» True for many software algorithms too
- General purpose numerical computing generally done in floating point
» Essentially scientific notation
» Fixed sized field to represent the fractional part and fixed number of bits to represent the exponent
》 ± 1.fraction $\times 2^{\wedge} \exp$
- Some DSP algorithms used block floating point
» Fixed point, but for each block of numbers an additional value specifies the exponent.

