
1

EECS 150 - Components and Design Techniques for
Digital Systems

Lec 19 – Fixed Point & Floating Point
Arithmetic

10/23/2007

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

2

Outline
• Review of Integer Arithmetic
• Fixed Point
• IEEE Floating Point Specification
• Implementing FP Arithmetic (interactive)

3

Representing Numbers
• What can be represented in N bits?

– 2N distinct symbols => values
– Unsigned 0 to 2N - 1
– 2s Complement -2(N-1) to 2(N-1) - 1
– ASCII -10(N/8-2) - 1 to 10(N/8-1) - 1

• But, what about?
– Very large numbers? (seconds/century)

3,155,760,000ten (3.15576ten x 109)
– Very small numbers? (secs/ nanosecond)

0.000000001ten (1.0ten x 10-9)
– Bohr radius

⇒ 0.000000000052917710m (5.2917710 x 10-11)
– Rationals 2/3 (0.666666666. . .)
– Irrationals 21/2 (1.414213562373. . .)
– Transcendentals e (2.718...), π (3.141...)

4

Recall: Digital Number Systems
• Positional notation

– Dn-1 Dn-2 …D0 represents Dn-1Bn-1 + Dn-2Bn-2 + …+ D0 B0

where Di ∈ { 0, …, B-1 }

• 2s Complement
– Dn-1 Dn-2 …D0 represents: - Dn-12n-1 + Dn-22n-2 + …+ D0 20

– MSB has negative weight

• Binary Point is effectively
at the far right
of the word

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1

0000…

5

Representing Fractional Numbers
• Fixed-Point Positional notation

– Dn-k-1 Dn-k-2 …D0…D-k represents Dn-k-1Bn-k-1 + Dn-2Bn-2 + …+ D-k B-k

where Di ∈ { 0, …, B-1 }

• 2s Complement
– Dn-k-1 Dn-2 …D-k represents: - Dn-k-12n-k-1 + Dn-22n-2 + …+ D-k 2-k

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1/4

+1/2

+3/4

+1

+5/4
+3/2

+7/4-2

-7/4

-3/2

-5/4

-1
-3/4

-1/2
-1/4

6

Circuits for Fixed-Point Arithmetic
• Adders?

– identical circuit
– Position of the binary point is entirely in

the interpretation
– Be sure the interpretations match

» i.e. binary points line up

• Subtractors?
• Multipliers?

– Position of the binary point just as you
learned by hand

– Mult two n-bit numbers yields 2n-bit
result with binary point determined by
binary point of the inputs

– 2-k * 2-m = 2-k-m

+

*

7

How do you represent…
• Very big numbers - with a few characters?
• Very small numbers – with a few characters?

8

Scientific Notation

6.0210 x 1023

radix (base)decimal point

mantissa exponent

• Normalized form: no leadings 0s, exactly one digit to
left of decimal point

• Alternatives to representing 1/1,000,000,000
– Normalized: 1.0 x 10-9

– Not normalized: 0.1 x 10-8,10.0 x 10-10

9

Scientific Notation (in Binary)

1.0two x 2-1

radix (base)“binary point”

exponent

• Computer arithmetic that directly supports this kind of
representation called floating point, because it
represents numbers where the binary point is not in a
fixed position, but “floats”.

– Declared in C as float

• Floats are more like “reals” than integers, but they are
not. They have a finite representation.

mantissa

10

UCB’s “Father” of IEEE Floating point

IEEE Standard
754 for Binary
Floating-Point

Arithmetic.

www.cs.berkeley.edu/~wkahan/
…/ieee754status/754story.html

Prof. Kahan

1989
ACM Turing

Award Winner!

11

IEEE Floating Point Representation
• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

• Multiple of Word Size (32 bits)

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1.Significand) x 2(Exponent-127)

• Single precision represents numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

excess 127
Hidden 1

12

Which 2N numbers can you represent?

• 8 million equally spaced values, between …
– 1 and 2
– -1.0 and -0.5 (-20 and -2-1)
– 2-125 and 2-124

– 2124 and 2 125

Each successive power of two
• Which integers are represented exactly?
• Which are not?
• Which fractions?
• Where is there a gap?

0 2 4 6 8 10 12 14 16

13

Floating Point Representation
• What if result too large (in magnitude)?

(> 2.0x1038 , < -2.0x1038)
– Overflow! ⇒ Exponent larger than represented in 8-bit Exponent field

• What if result too small (in magnitude)?
(>0 & < 2.0x10-38 , <0 & > - 2.0x10-38)
– Underflow! ⇒ Negative exponent larger than represented in 8-bit Exponent

field

• What would help reduce chances of overflow and/or underflow?

0 2x10-38 2x10381-1 -2x10-38-2x1038

underflow overflowoverflow

14

Denorms
• Problem: if A ≠ B then is A-B ≠ 0?
• gap among representable FP numbers

around 0
– Smallest representable pos num:

a = 1.0… 2 * 2-126 = 2-126

– Second smallest representable pos num:
b = 1.000……1 2 * 2-126

= (1 + 0.00…12) * 2-126

= (1 + 2-23) * 2-126

= 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0

+-
Gaps!

15

Denorms
• Solution:

– Denormalized number: no (implied) leading 1, implicit
exponent = -126.

– Exponent = 0, Significand nonzero
– Smallest representable pos num:

a = 2-149

– Second smallest representable pos num:
b = 2-148

• What do you give up for A ≠ B => A-B ≠ 0 ?
– Multiplicative inverse: If A exists 1/A exists

0
+-

16

Announcements
• Readings: http://en.wikipedia.org/wiki/IEEE_754
• Labs

– Free week inserted now, remove one check point, back off the
options at the end

– Design review will stay on schedule
» More time between review and implementation
» Take the prep for design review seriously

• Discuss Thurs discussion
• Party Problem
• Lab 5 code walk through on Friday
• Mid term II on 11/1, review 10/30 at 8 pm

17

Special IEEE 754 Symbols: Infinity

• Overflow is not same as divide by zero
• IEEE 754 represents +/- infinity

– OK to do further computations with infinity e.g., X/0 > Y may be a
valid comparison

– Most positive exponent reserved for infinity

Exponent Significand Object
0 0 => 0
0 nonzero => denorm
1-254 anything => +/- fl. pt. #
255 0 => +/- ∞
255 nonzero => NaN

18

Examples

NaNnon zero1111 1111NaN

Infinity000 0000 0000 0000 0000 00001111 1111Infinity

1.18×10-38000 0000 0000 0000 0000 00000000 0001Small normalized number

3.4×1038111 1111 1111 1111 1111 11111111 1110Large normalized number

1.18×10-38111 1111 1111 1111 1111 11110000 0000Large denormalized number

1.4×10-45000 0000 0000 0000 0000 00010000 0000Small denormalized number

1.0000 0000 0000 0000 0000 00000111 1111One

0.0000 0000 0000 0000 0000 00000000 0000Zero

ValueSignificandExponentType

19

Double Precision FP Representation

• Next Multiple of Word Size (64 bits)

• Double Precision (vs. Single Precision)
– C variable declared as double
– Represent numbers almost as small as

2.0 x 10-308 to almost as large as 2.0 x 10308

– But primary advantage is greater accuracy
due to larger significand

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits

20

How do we do arithmetic on FP?
• Just like with scientific notation
• Addition

– Eg. 9.45 x 103 + 6.93 x 102

– Shift mantissa so that have common exponent (unnormalize)
– 9.45 x 103 + 0.693 x 103

– Add mantissas: 10.143 x 103

– Renormalize: 1.0143 x 104

– Round: 1.01 x 104

• IEEE rounding – as if had carried full precision
and rounded at the last step

• Multiplication?

21

Let’s build an FP function unit: mult

Sa Ea

8

1.Ma

24

Sb Eb

8

1.Mb

24

Sr Er

8

1.Mr

24

*
Ctrl?

22

What is the multiplication algorithm?

• 9.45 x 103 * 6.93 x 102

23

Let’s build an FP function unit: mult

Sa Ea

8

1.Ma

24

Sb Eb

8

1.Mb

24

Sr Er

8

1.Mr

24

Ctrl?Adder(8) Multiplier(24)

48

?

?

24

Let’s build a FP function unit: mult

Sa Ea

8

1.Ma

24

Sb Eb

8

1.Mb

24

Sr Er

8

1.Mr

24

Ctrl?Adder(8) Multiplier(24)

48
?

-127

Ea = expa + 127

Eb = expb + 127

Ea + Eb = expa + expb + 254 !

25

What is the range of mantissas?

Sa Ea

8

1.Ma

24

Sb Eb

8

1.Mb

24

Sr Er

8

1.Mr

24

Ctrl?Adder(8) Multiplier(24)

48
-127

shifter

Unnorm?

inc
48

?

26

What is the range of mantissas?

Sa Ea

8

1.Ma

24

Sb Eb

8

1.Mb

24

Sr Er

8

1.Mr

24

Ctrl?Adder(8) Multiplier(24)

48
-127

shifter

Unnorm?

inc
48

Round
?

27

Rounding

• Real numbers have “inifinite precision”, FPs don’t.
• When we perform arithmetic on FP numbers, we

must round to fit the result in the significand field.

• IEEE FP behaves as if all internal operations were
performed to full precision and then rounded at the
end.

– Actually only carries 3 extra bits along the way
» Guard bit | Round bit | Sticky bit

28

IEEE FP Rounding Modes

• Round towards +∞
– Decimal: 1.1 → 1, 1.9 → 2, 1.5 → 2, -1.1 → -1, -1.9 → -2, -1.5 → -1,
– Binary: 1.01 → 1, 1.11 → 10, 1.1 → 10, -1.01 → -1, -1.11 → -10, -1.1 → -1,
– What is the accumulated bias with a large number of operations?

• Round towards - ∞
– Decimal: 1.1 → 1, 1.9 → 2, 1.5 → 1, -1.1 → -1, -1.9 → -2, -1.5 → -2,
– Binary: 1.01 → 1, 1.11 → 10, 1.1 → 1, -1.01 → -1, -1.11 → -10, -1.1 → -10,
– What is the accumulated bias with a large number of operations?

• Round Towards Zero - Truncate
– Decimal: 1.1 → 1, 1.9 → 2, 1.5 → 1, -1.1 → -1, -1.9 → -2, -1.5 → -1,
– Binary: 1.01 → 1, 1.11 → 10, 1.1 → 1, -1.01 → -1, -1.11 → -10, -1.1 → -1,
– What is the accumulated bias with a large number of operations?

• Round to even - Unbiased (default mode).
– Decimal: 1.1 → 1, 1.9 → 2, 1.5 → 2, -1.1 → -1, -1.9 → -2, -1.5 → -2, 2.5 → 2, -2.5 → -2
– Binary: 1.01 → 1, 1.11 → 10, 1.1 → 10, -1.01 → -1, -1.11 → -10, -1.1 → -1, 10.1 → 10, -10.1 → -10

– if the value is right on the borderline, we round to the nearest EVEN number
– This way, half the time we round up on tie, the other half time we round down.

29

Basic FP Addition Algorithm
For addition (or subtraction) of X to Y (assuming X<Y):

(1) Compute D = ExpY - ExpX (align binary point)

(2) Right shift (1+SigX) D bits => (1+SigX)*2(ExpX-ExpY)

(3) Compute (1+SigX)*2(ExpX - ExpY) + (1+SigY)

Normalize if necessary; continue until MS bit is 1
(4) Too small (e.g., 0.001xx...)

left shift result, decrement result exponent
(4’) Too big (e.g., 101.1xx…)

right shift result, increment result exponent

(5) If result significand is 0, set exponent to 0

30

Let’s build an FP function unit: add

Sa Ea

8

1.Ma

24

Sb Eb

8

1.Mb

24

Sr Er

8

1.Mr

24

+
Ctrl?

31

Floating Point Fallacies: Add Associativity?

• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0
• x + (y + z) = –1.5x1038 + (1.5x1038 + 1.0)

= –1.5x1038 + (1.5x1038) = 0.0
• (x + y) + z = (–1.5x1038 + 1.5x1038) + 1.0

= (0.0) + 1.0 = 1.0
• Therefore, Floating Point add not associative!

– 1.5 x 1038 is so much larger than 1.0
that 1.5 x 1038 + 1.0 is still 1.5 x 1038

– Fl. Pt. result approximation of real result!

32

Floating Point Fallacy: Accuracy optional?

• July 1994: Intel discovers bug in Pentium
– Occasionally affects bits 12-52 of D.P. divide

• Sept: Math Prof. discovers, put on WWW
• Nov: Front page trade paper, then NYTimes

– Intel: “several dozen people that this would affect. So far, we've only
heard from one.”

– Intel claims customers see 1 error/27000 years
– IBM claims 1 error/month, stops shipping

• Dec: Intel apologizes, replace chips $300M
• Reputation? What responsibility to society?

33

Arithmetic Representation
• Position of binary point represents a trade-off of

range vs precision
– Many digital designs operate in fixed point

» Very efficient, but need to know the behavior of the
intended algorithms

» True for many software algorithms too
– General purpose numerical computing generally done in

floating point
» Essentially scientific notation
» Fixed sized field to represent the fractional part and fixed

number of bits to represent the exponent
» ± 1.fraction x 2^ exp

– Some DSP algorithms used block floating point
» Fixed point, but for each block of numbers an additional

value specifies the exponent.

