

EECS 150 - Components and Design Techniques for Digital Systems

Lec 19 – Fixed Point & Floating Point

Arithmetic

10/23/2007

David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

> http://www.eecs.berkeley.edu/~culler http://inst.eecs.berkeley.edu/~cs150

Outline

- Review of Integer Arithmetic
- Fixed Point
- IEEE Floating Point Specification
- Implementing FP Arithmetic (interactive)

1

Representing Numbers

• What can be represented in N bits?

- 2^N distinct symbols => values

 Unsigned 	0	to	2 ^ℕ - 1
– 2s Complement	-2 ^(N-1)	to	2 ^(N-1) - 1
– ASCII	-10 ^(N/8-2) - 1	to	10 ^(N/8-1) - 1

• But, what about?

– Very la	arge nu	mbe	rs? (secon	ds/century)
	3,1	55,70	50,000 _{ten}	(3.1	5576 _{ten} x 10 ⁹)
			• (

- Very small numbers? (secs/ nanosecond) $0.00000001_{ten} (1.0_{ten} \ x \ 10^{-9})$
- Bohr radius
- ⇒ 0.000000000529177₁₀m (5.29177₁₀ x 10⁻¹¹)

– Rationals	2/3	(0.666666666)
 Irrationals 	2 ^{1/2}	(1.414213562373)

- Transcendentals e (2.718...), π (3.141...)

Recall: Digital Number Systems

- Positional notation
 - $\begin{array}{l} \ D_{n-1} \ D_{n-2} \ ... D_0 \ represents \ D_{n-1} B^{n-1} + D_{n-2} B^{n-2} + \ ... + D_0 \ B^0 \\ \\ where \ D_i \ \in \ \left\{ \ 0, \ ..., \ B-1 \ \right\} \end{array}$
- 2s Complement
 - $\ D_{n-1} \ D_{n-2} \ ... D_0 \ represents: \ \ D_{n-1} 2^{n-1} \ + \ D_{n-2} 2^{n-2} \ + \ ... + \ D_0 \ 2^0$

-5

-6

-7

-1

1110

1111 0000

+7

-2

1101

1100

1011

1010

100

+0

0001

0010

0101

0110

0011

0100 +4

+2

+3

- MSB has negative weight

2

3

Representing Fractional Numbers

- Fixed-Point Positional notation
 - $\begin{array}{l} \ D_{n \cdot k \cdot 1} \ D_{n \cdot k \cdot 2} \ ... D_{0 ...} D_{\cdot k} \ represents \ D_{n \cdot k \cdot 1} B^{n \cdot k \cdot 1} + D_{n \cdot 2} B^{n \cdot 2} + \ ... + D_{\cdot k} \ B^{\cdot k} \\ & \text{where } D_i \ \in \{ \ 0, \ ..., \ B^{-1} \ \} \end{array}$
- 2s Complement
 - $D_{n-k-1} D_{n-2} \dots D_{-k}$ represents: $D_{n-k-1} 2^{n-k-1} + D_{n-2} 2^{n-2} + \dots + D_{-k} 2^{-k}$

How do you represent...

- · Very big numbers with a few characters?
- Very small numbers with a few characters?

Circuits for Fixed-Point Arithmetic

• Adders?

- identical circuit
- Position of the binary point is entirely in the interpretation
- Be sure the interpretations match
 - » i.e. binary points line up
- Subtractors?
- Multipliers?
 - Position of the binary point just as you learned by hand
 - Mult two n-bit numbers yields 2n-bit result with binary point determined by binary point of the inputs
 - $-2^{-k} * 2^{-m} = 2^{-k-m}$

Scientific Notation

- Normalized form: no leadings 0s, exactly one digit to left of decimal point
- Alternatives to representing 1/1,000,000,000

– Normalized:	1.0 x 10 ⁻⁹
-Not normalized:	0.1 x 10 ⁻⁸ ,10.0 x 10 ⁻¹⁰

11

• Where is there a gap?

• Single precision represents numbers as small as 2.0 x 10⁻³⁸ to as large as 2.0 x 10³⁸

12

= -118.625

1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0

Floating Point Representation

• What if result too large (in magnitude)?

 $(> 2.0 \times 10^{38}, < -2.0 \times 10^{38})$

- <u>Overflow</u>! ⇒ Exponent larger than represented in 8-bit Exponent field
- What if result too small (in magnitude)?
 - (>0 & < 2.0x10^{-38} , <0 & > 2.0x10^{-38})
 - <u>Underflow!</u> ⇒ Negative exponent larger than represented in 8-bit Exponent field

· What would help reduce chances of overflow and/or underflow?

13

Denorms

- Solution:
 - <u>Denormalized number</u>: no (implied) leading 1, implicit exponent = -126.
 - Exponent = 0, Significand nonzero
 - Smallest representable pos num:

a = 2⁻¹⁴⁹

– Second smallest representable pos num:

b = 2⁻¹⁴⁸

- What do you give up for A ≠ B => A-B ≠ 0 ?
 - Multiplicative inverse: If A exists 1/A exists

Denorms

- Problem: if A ≠ B then is A-B ≠ 0?
- gap among representable FP numbers around 0
 - Smallest representable pos num:

a = 1.0... 2 * 2⁻¹²⁶ = 2⁻¹²⁶

- Second smallest representable pos num:

14

Announcements

- Readings: http://en.wikipedia.org/wiki/IEEE_754
- Labs
 - Free week inserted now, remove one check point, back off the options at the end
 - Design review will stay on schedule
 - » More time between review and implementation
 - » Take the prep for design review seriously
- Discuss Thurs discussion
- Party Problem
- Lab 5 code walk through on Friday
- Mid term II on 11/1, review 10/30 at 8 pm

Special IEEE 754 Symbols: Infinity

- Overflow is not same as divide by zero
- IEEE 754 represents +/- infinity
 - OK to do further computations with infinity e.g., X/0 > Y may be a valid comparison
 - Most positive exponent reserved for infinity

Exponent	Significand		Object	
0	0	=>	0	
0	nonzero	=>	denorm	
1-254	anything	=>	+/- fl. pt. #	
255	0	=>	+/- ∞	
255	nonzero	=>	NaN	

17

Examples

Туре	Exponent	Significand	Value
Zero	0000 0000	000 0000 0000 0000 0000 0000	0.0
One	0111 1111	000 0000 0000 0000 0000 0000	1.0
Small denormalized number	0000 0000	000 0000 0000 0000 0000 0001	1.4×10 ⁻⁴⁵
Large denormalized number	0000 0000	111 1111 1111 1111 1111 1111	1.18×10 ⁻³⁸
Large normalized number	1111 1110	111 1111 1111 1111 1111 1111	3.4×10 ³⁸
Small normalized number	0000 0001	000 0000 0000 0000 0000 0000	1.18×10 ⁻³⁸
Infinity	1111 1111	000 0000 0000 0000 0000 0000	Infinity
NaN	1111 1111	non zero	NaN

18

Double Precision FP Representation

Next Multiple of Word Size (64 bits)

3 <u>1 30</u>	2	20 19	0	
S	Exponent	Significand		
1 bit	11 bits	20 bits		
	Significand (cont'd)			
32 bits				

• Double Precision (vs. Single Precision)

- C variable declared as double
- Represent numbers almost as small as 2.0 x 10⁻³⁰⁸ to almost as large as 2.0 x 10³⁰⁸
- But primary advantage is greater accuracy due to larger significand

How do we do arithmetic on FP?

- · Just like with scientific notation
- Addition

_

- Eg. 9.45 x 10³ + 6.93 x 10²
- Shift mantissa so that have common exponent (unnormalize)
 - 9.45 x 10³ + 0.693 x 10³
- Add mantissas: 10.143 x 10³
- Renormalize: 1.0143 x 10⁴
- Round: 1.01 x 10⁴
- IEEE rounding as if had carried full precision and rounded at the last step
- Multiplication?

What is the range of mantissas?

Rounding

- Real numbers have "inifinite precision", FPs don't.
- When we perform arithmetic on FP numbers, we must round to fit the result in the significand field.

- IEEE FP behaves as if all internal operations were performed to full precision and then rounded at the end.
 - Actually only carries 3 extra bits along the way
 - » Guard bit | Round bit | Sticky bit

What is the range of mantissas?

IEEE FP Rounding Modes

- Round towards +∞
 - $\text{ Decimal: } 1.1 \rightarrow 1, \ 1.9 \rightarrow 2, \quad 1.5 \rightarrow 2, \ -1.1 \rightarrow -1, \quad -1.9 \rightarrow -2, \quad -1.5 \rightarrow -1,$
 - Binary: 1.01 \rightarrow 1, 1.11 \rightarrow 10, 1.1 \rightarrow 10, -1.01 \rightarrow -1, -1.11 \rightarrow -10, -1.1 \rightarrow -1,
 - What is the accumulated bias with a large number of operations?
- Round towards ∞
 - $\ \ \mathsf{Decimal:} \ 1.1 \rightarrow 1, \ \ 1.9 \rightarrow 2, \quad \ \frac{1.5 \rightarrow 1}{.}, \ -1.1 \rightarrow -1, \quad -1.9 \rightarrow -2, \quad -1.5 \rightarrow -2,$
 - Binary: $1.01 \rightarrow 1, 1.11 \rightarrow 10, 1.1 \rightarrow 1, -1.01 \rightarrow -1, -1.11 \rightarrow -10, -1.1 \rightarrow -10,$
 - What is the accumulated bias with a large number of operations?
- Round Towards Zero Truncate
 - Decimal: $1.1 \rightarrow 1$, $1.9 \rightarrow 2$, $1.5 \rightarrow 1$, $-1.1 \rightarrow -1$, $-1.9 \rightarrow -2$, $-1.5 \rightarrow -1$,
 - Binary: $1.01 \rightarrow 1, 1.11 \rightarrow 10, 1.1 \rightarrow 1, -1.01 \rightarrow -1, -1.11 \rightarrow -10, -1.1 \rightarrow -1,$
 - What is the accumulated bias with a large number of operations?
- · Round to even Unbiased (default mode).
 - Decimal: $1.1 \rightarrow 1$, $1.9 \rightarrow 2$, $1.5 \rightarrow 2$, $-1.1 \rightarrow -1$, $-1.9 \rightarrow -2$, $-1.5 \rightarrow -2$, $2.5 \rightarrow 2$, $-2.5 \rightarrow -2$
 - Binary: $1.01 \rightarrow 1, 1.11 \rightarrow 10, 1.1 \rightarrow 10, -1.01 \rightarrow -1, -1.11 \rightarrow -10, -1.1 \rightarrow -1, 10.1 \rightarrow 10, -10.1 \rightarrow -10$
 - if the value is right on the borderline, we round to the nearest EVEN number
 - This way, half the time we round up on tie, the other half time we round down.

Ø

Basic FP Addition Algorithm

For addition (or subtraction) of X to Y (assuming X<Y):

- (1) Compute D = $Exp_{Y} Exp_{X}$ (align binary point)
- (2) Right shift $(1+Sig_x)$ D bits => $(1+Sig_x)*2^{(ExpX-ExpY)}$
- (3) Compute $(1+Sig_{X})*2^{(ExpX ExpY)} + (1+Sig_{Y})$

Normalize if necessary; continue until MS bit is 1 (4) Too small (e.g., 0.001xx...)

- left shift result, decrement result exponent
- (4') Too big (e.g., 101.1xx...) right shift result, increment result exponent
- (5) If result significand is 0, set exponent to 0

29

Floating Point Fallacies: Add Associativity?

- $x = -1.5 \times 10^{38}$, $y = 1.5 \times 10^{38}$, and z = 1.0
- $x + (y + z) = -1.5x10^{38} + (1.5x10^{38} + 1.0)$
 - = -1.5x10³⁸ + (1.5x10³⁸) = 0.0
- $(x + y) + z = (-1.5x10^{38} + 1.5x10^{38}) + 1.0$

- <u>Therefore, Floating Point add not associative!</u>
 - 1.5 x 10³⁸ is so much larger than 1.0 that 1.5 x 10³⁸ + 1.0 is still 1.5 x 10³⁸
 - FI. Pt. result approximation of real result!

Let's build an FP function unit: add

Floating Point Fallacy: Accuracy optional?

- July 1994: Intel discovers bug in Pentium – Occasionally affects bits 12-52 of D.P. divide
- · Sept: Math Prof. discovers, put on WWW
- Nov: Front page trade paper, then NYTimes
 - Intel: "several dozen people that this would affect. So far, we've only heard from one."
 - Intel claims customers see 1 error/27000 years
 - IBM claims 1 error/month, stops shipping
- Dec: Intel apologizes, replace chips \$300M
- Reputation? What responsibility to society?

Arithmetic Representation

- Position of binary point represents a trade-off of range vs precision
 - Many digital designs operate in fixed point
 - » Very efficient, but need to know the behavior of the intended algorithms
 - » True for many software algorithms too
 - General purpose numerical computing generally done in floating point
 - » Essentially scientific notation
 - » Fixed sized field to represent the fractional part and fixed number of bits to represent the exponent
 - » ± 1.fraction x 2[^] exp
 - Some DSP algorithms used block floating point
 - » Fixed point, but for each block of numbers an additional value specifies the exponent.

33