

EECS 150 - Components and Design Techniques for Digital Systems

Lec 15 – Addition, Subtraction, and Negative Numbers

David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

> http://www.eecs.berkeley.edu/~culler http://inst.eecs.berkeley.edu/~cs150

Overview

- Recall basic positional notation
- Binary Addition
 Full Adder (Boolean Logic Revisited)
- Ripple Carry
- Carry-select adder
- Carry lookahead adder
- Binary Number Representation
 Sign & Magnitude, Ones Complement, Twos
 Complement

10/16/2007

EECS150-Fa07 L15 addition

Manipulating representations of numbers

• Example (from 2nd grade)

- Sequence of decimal digits (radix 10)
- Position represents significance (most -> least)
- Carry into next position
- 3-to-2 conversion at each step
- Results may be one digit longer, but assumed you could "make room" for it

Positional Notation

- Sequence of digits: $D_{k-1} D_{k-2} \dots D_0$ represents the value

$$D_{k-1}B^{k-1} + D_{k-2}B^{k-2} + \dots + D_0 B^0$$

where $\textbf{D}_{i} \in$ { 0, ..., B-1 }

- B is the "base" or "radix" of the number system
- Example: 2004₁₀,
- Can convert from any radix to any other

$$-1101_2 = 13_{10} = 0D_{16}$$

- $\ \mathbf{1CE8}_{16} = \mathbf{1} \cdot \mathbf{16}^3 + \mathbf{12} \cdot \mathbf{16}^2 + \mathbf{14} \cdot \mathbf{16}^1 + \mathbf{8} \cdot \mathbf{16}^0 = \mathbf{7400}_{10}$
- $436_8 = 4 \cdot 8^2 + 3 \cdot 8^1 + 6 \cdot 8^0 = 286_{10}$

Computer Number Systems

- We all take positional notation for granted
 - $D_{k-1} D_{k-2} \dots D_0$ represents $D_{k-1}B^{k-1} + D_{k-2}B^{k-2} + \dots + D_0 B^0$ where $B \in \{0, \dots, B-1\}$
- We all understand how to compare, add, subtract these numbers
 - Add each position, write down the position bit and possibly carry to the next position
- Computers represent finite number systems
 - Generally radix 2
- · How do they efficiently compare, add, sub?
 - How do we reduce it to networks of gates and FFs?
- Where does it break down?
 - Manipulation of finite representations doesn't behave like same operation on conceptual numbers

10/16/2007

EECS150-Fa07 L15 addition

Unsigned Numbers - Addition

How do we build a combinational logic circuit to perform addition?

=> Start with a truth table and go from there 10/16/2007 EECS150-Fa07 L15 addition

Binary Addition: Half Adder

Δi

Bi

0

1

Ai	Bi	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Sum

Carry

1

0

1

0

Carry = Ai Bi

= Ai⊕Bi

Half-adder Schematic

But each bit position may have a carry in...

B

Full-Adder (derivation)

Ø

Full Adder

Now we can connect them up to do multiple bits...

10/16/2007

EECS150-Fa07 L15 addition

Ripple Carry

Full Adder from Half Adders (little aside)

Alternative Implementation: 5 Gates

 $A B + CI (A \times or B) = A B + B CI + A CI$

Delay in the Ripple Carry Adder

Critical delay: the propagation of carry from low to high order stages

Ripple Carry Timing

Recall: Virtex-E CLB

CLB = 4 logic cells (LC) in two slices

Carry Select Adder

LC: 4-input function generator, carry logic, storage ele't

80 x 120 CLB array on 2000E

Adders (cont.)

Ripple adder is inherently slow because, in general s7 must wait for c7 which must wait for c6 ...

 $T \alpha n$, $Cost \alpha n$

How do we make it faster, perhaps with more cost?

Classic approach: Carry Look-Ahead

Or use a MUX !!! EECS150-Fa07 L15 addition

10/16/2007

10/16/2007

COST = 1.5 * COST_{ripple adder}+ (n+1) * COST_{MUX} EECS150-Fa07 L15 addition

c0

b4a40 b3a3 <u>b2a2</u> b0a0 b7a7 b6a6 b5a5 b1a1 s3 s2 s1 s0 c8 0 b7a7 b6a6 b5a5 b4a4 FA 1 0/ 1 0/ 1 0/ s7 s6 s5 s4 $T = T_{ripple adder} / 2 + T_{MUX}$

Extended Carry Select Adder

• What is the optimal # of blocks and # of bits/block?

- If # blocks too large delay dominated by total mux delay
- If # blocks too small delay dominated by adder delay per block

T α sqrt(N), Cost ≈2*ripple + muxes

10/16/2007

EECS150-Fa07 L15 addition

Carry Select Adder Performance

- Compare to ripple adder delay: T_{total} = 2 sqrt(N) T_{FA} - T_{FA}, assuming T_{FA} = T_{MUX} For ripple adder T_{total} = N T_{FA} "cross-over" at N=3, Carry select faster for any value of N>3.
- Is sqrt(N) really the optimum?
 - From right to left increase size of each block to better match delays
 - Ex: 64-bit adder, use block sizes [12 11 10 9 8 7 7]
- · How about recursively defined carry select?

```
10/16/2007
```

EECS150-Fa07 L15 addition

Announcements

- Reading Katz 5.6 and Appendix A
- Mid III will just stay put in final slot no more fussing with it.
- · Project demo at Lab Lecture friday
- Don't hedge on lab workload reporting
 - It matters to us and is NOT a negative in your grade
- Lab5 | CP1 | CP2 crunch
 - It should lighten
 - Don't hesitate to get guidance on the specifics of your approach from the TAs. They are there to help.
 - Lab5 solution walk-thru Friday after lab lecture

What really happens with the carries

Carry Generate **Gi = Ai Bi**

Carry Propagate Pi = Ai xor Bi

carry in will equal carry out here

must generate carry when A = B = 1

All generates and propagates in parallel at first stage. No ripple. 10/16/2007 EECS150-Fa07 L15 addition

All Carries in Parallel

Re-express the carry logic for each of the bits:

C1 = G0 + P0 C0

C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0

Each of the carry equations can be implemented in a two-level logic network

Variables are the adder inputs and carry in to stage O!

CLA Implementation

10/16/2007

10/16/2007

How do we extend this to larger adders?

- Faster carry propagation – 4 bits at a time
- But still linear
- · Can we get to log?
- Compute propagate and generate for each adder BLOCK

10/16/2007

EECS150-Fa07 L15 addition

Cascaded Carry Lookahead

4 bit adders with internal carry lookahead second level carry lookahead unit, extends lookahead to 16 bits One more level to 64 bits

```
10/16/2007
```

EECS150-Fa07 L15 addition

Trade-offs in combinational logic design

• Time vs. Space Trade-offs

Doing things fast requires more logic and thus more space Example: carry lookahead logic

- Simple with lots of gates vs complex with fewer
- Arithmetic Logic Units

Critical component of processor datapath

Inner-most "loop" of most computer instructions

So what about subtraction?

- Develop subtraction circuit using the same process
 - Truth table for each bit slice
 - Borrow in from slice of lesser significance
 - Borrow out to slice of greater significance
 - Very much like carry chain
- Homework exercise

10/16/2007

Finite representation? Number Systems Desirable properties: +15 +0 - Efficient encoding (2ⁿ bit patterns. How many numbers?) · What happens when 1111 0000 +1 - Positive and negative +14 $A + B > 2^{N} - 1$? 0001 » Closure (almost) under addition and subtraction +2 Overflow · Except when overflow 0010 1101 » Representation of positive numbers same in most systems - Detect? +12+3 » Major differences are in how negative numbers are represented 0011 100 » Carry out - Efficient operations What happens when +11 1011 0100 +4 » Comparison: =, <, > A - B < 0? » Addition, Subtraction 1010 0101 Which one did you learn in 2nd +10 +5 » Detection of overflow - Negative numbers? grade? 1001 0110 - Algebraic properties? - Borrow out? +6 0111 » Closure under negation? +7 +8 A == B iff A - B == 0 Three Major schemes: - sign and magnitude ones complement twos complement 10/16/2(excess notation) 10/16/2007 EECS150-Fa07 L15 addition EECS150-Fa07 L15 addition

Sign and Magnitude

High order bit is sign: 0 = positive (or zero), 1 = negative Remaining low order bits is the magnitude: 0 (000) thru 7 (111) Number range for n bits = +/- $2^{n-1} - 1$

Representations for 0?

Operations: =, <, >, +, - ??? 10/16/2007 EECS150-Fa07 L15 addition

Ones Complement

Bit manipulation:

simply complement each of the bits

0111 -> 1000

Algebraically ...

N is positive number, then \overline{N} is its negative 1's complement

10/16/2007

EECS150-Fa07 L15 addition

Ones Complement on the number wheel

Subtraction implemented by addition & 1's complement Sign is easy to determine Closure under negation. If A can be represented, so can -A Still two representations of O! If A = B then is A - B == 0 ? Addition is **almost** clock wise advance, the unsigned

Twos Complement number wheel

 $N^{*} = 2^{n} - N$ $2^{4} = 10000$ Example: Twos complement of 7 sub 7 = 0111 1001 = repr. of -7Example: Twos complement of -7 $2^{4} = 10000$ sub -7 = 1001 0111 = repr. of 7Bit manipulation:
Twos complement: take bitwise complement and add one $0111 \rightarrow 1000 + 1 \rightarrow 1001 (representation of -7)$ $1001 \rightarrow 0110 + 1 \rightarrow 0111 (representation of 7)$ 1016/2007EECS150-Fa07 L15 addition

How is addition performed in each number system?

· Operands may be positive or negative

Ø

Operand have same sign: unsigned addition of magnitudes

necult cion hit is the	4	0100	-4	1100
same as the operands'	+ 3	0011	+ <u>(-3)</u>	1011
olgh	7	0111	-7	1111

Operands have different signs:

subtract smaller from larger and keep sign of the larger

4	0100	-4	1100
- 3	1011	+ 3	0011
1	0001	-1	1001

10/16/2007

EECS150-Fa07 L15 addition

When carry occurs

-M - N

Ones complement addition

Perform unsigned addition, then add in the end-around carry

4	0100	-4	1011	
<u>+ 3</u>	0011	+ <u>(-3)</u>	1100	
7	0111	-7	10111	
	End	End around carry		
			1000	
4	0100	-4	1011	
<u>- 3</u>	1100	+ 3	0011	
1	10000	-1	1110	
End around carry	$ \rightarrow 1 $			
07	0001 EECS150-Fa0	7 L15 addition		

Why does end-around carry work?

Recall: $\overline{N} = (2^n - 1) - N$

End-around carry work is equivalent to subtracting 2^n and adding 1

$$M - N = M + \overline{N} = M + (2^{n} - 1 - N) = (M - N) + 2^{n} - 1 \text{ (when } M > N)$$

-M + (-N) = $\overline{M} + \overline{N} = (2^{n} - M - 1) + (2^{n} - N - 1)$
= $2^{n} + [2^{n} - 1 - (M + N)] - 1$
M + N < 2^{n-1}

after end around carry:

this is the correct form for representing -(M + N) in 1's comp!

10/16/2007

10/16/2007

EECS150-Fa07 L15 addition

Ø

Twos Complement Addition

Perform unsigned addition and	4	0100	-4	1100
Discard the carry out.	+ 3	0011	+ <u>(-3)</u>	1101
	7	0111	-7	11001
Overflow?				
	4	0100	-4	1100
	- 3	1101	+ 3	0011
	1	10001	-1	1111

Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

10/16/2007

EECS150-Fa07 L15 addition

Twos Complement number wheel

-M + -N where N + M \leq 2n-1

-M + N when N > M

10/16/2007

EECS150-Fa07 L15 addition

2s Comp: ignore the carry out

-M + N when N > M: $M^* + N = (2^n - M) + N = 2^n + (N - M)$ Ignoring carry-out is just like subtracting 2^n

-M + -N where N + M $\leq 2^{n-1}$

$$-M + (-N) = M^* + N^* = (2^n - M) + (2^n - N)$$
$$= 2^n - (M + N) + 2^n$$

After ignoring the carry, this is just the right twos compl. representation for -(M + N)!

2s Complement Overflow

How can you tell an overflow occurred?

Add two positive numbers to get a negative number

2s comp. Overflow Detection

5	0111 0101	-7	$\begin{smallmatrix}1&0&0\\&1&0&0&1\end{smallmatrix}$	
3	0011	-2	1100	
-8	1000	7	10111	
Overflow		Over	Overflow	
5	$\begin{smallmatrix}&0&0&0\\&0&1&0&1\end{smallmatrix}$	-3	1111 1101	
2	0010	<u>-5</u>	1011	
7	0111	-8	11000	
No overflow		No ov	No overflow	

Overflow occurs when carry in to sign does not equal carry out 10/16/2007 EECS150-Fa07 L15 addition

2s Complement Adder/Subtractor

Summary

- · Circuit design for unsigned addition
 - Full adder per bit slice
 - Delay limited by Carry Propagation
 - » Ripple is algorithmically slow, but wires are short
- Carry select
 - Simple, resource-intensive
 - Excellent layout
- · Carry look-ahead
 - Excellent asymptotic behavior
 - Great at the board level, but wire length effects are significant on chip
- Digital number systems
 - How to represent negative numbers
 - Simple operations
 - Clean algorithmic properties
- · 2s complement is most widely used
 - Circuit for unsigned arithmetic
 - Subtract by complement and carry in
 - Overflow when cin xor cout of sign-bit is 1

EECS150-Fa07 L15 addition