EECS 150 - Components and Design

 Techniques for Digital SystemsLec 15 - Addition, Subtraction, and Negative Numbers

David Culler

Electrical Engineering and Computer Sciences
University of California, Berkeley
http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

- Recall basic positional notation
- Binary Addition

Full Adder (Boolean Logic Revisited)

- Ripple Carry
- Carry-select adder
- Carry lookahead adder
- Binary Number Representation

Sign \& Magnitude, Ones Complement, Twos Complement

Manipulating representations of numbers

- Example (from $\mathbf{2}^{\text {nd }}$ grade)

- Sequence of decimal digits (radix 10)
- Position represents significance (most -> least)
- Carry into next position
- 3-to-2 conversion at each step
- Results may be one digit longer, but assumed you could "make room" for it

Positional Notation

- Sequence of digits: $D_{k-1} D_{k-2} \ldots D_{0}$ represents the value

$$
\begin{aligned}
& D_{k-1} B^{k-1}+D_{k-2} B^{k-2}+\ldots+D_{0} B^{0} \\
& \text { where } D_{i} \in\{0, \ldots, B-1\}
\end{aligned}
$$

- B is the "base" or "radix" of the number system
- Example: $\mathbf{2 0 0 4}_{10}$,
- Can convert from any radix to any other
$-1101_{2}=13_{10}=0 D_{16}$
-1 CE8 $_{16}=1 \cdot 16^{3}+12 \cdot 16^{2}+14 \cdot 16^{1}+8 \cdot 16^{0}=7400_{10}$
$-436_{8}=4.8^{2}+3.8^{1}+6.8^{0}=286_{10}$

Computer Number Systems

- We all take positional notation for granted
$-D_{k-1} D_{k-2} \ldots D_{0}$ represents $D_{k-1} B^{k-1}+D_{k-2} B^{k-2}+\ldots+D_{0} B^{0}$ where $B \in\{0, \ldots, B-1\}$
- We all understand how to compare, add, subtract these numbers
- Add each position, write down the position bit and possibly carry to the next position
- Computers represent finite number systems - Generally radix 2
- How do they efficiently compare, add, sub?
- How do we reduce it to networks of gates and FFs?
- Where does it break down?
- Manipulation of finite representations doesn't behave like same operation on conceptual numbers

Unsigned Numbers - Addition

How do we build a combinational logic circuit to perform addition?
=> Start with a truth table and go from there
10/16/2007
EECS150-Fa07 L15 addition

Full-Adder (derivation)

Sum $=\overline{A \bar{i}} \mathbf{B i}+A \overline{B i}$
Carry = Ai Bi

$$
=\mathbf{A i} \oplus \mathbf{B i}
$$

Half-adder Schematic

But each bit position may have a carry in...

A	B	CI	CO	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$S=C I$ xor A xor B
$C O=B C I+A C I+A B=C I(A+B)+A B$

10/16/2007

Full Adder

Now we can connect them up to do multiple bits...

10/16/2007
EECS150-Fa07 L15 addition

Ripple Carry

10/16/2007

Full Adder from Half Adders (little aside)
Standard Approach: 6 Gates

Alternative Implementation: 5 Gates

Delay in the Ripple Carry Adder

Critical delay: the propagation of carry from low to high order stages

Ripple Carry Timing

Critical delay: the propagation of carry from low to high order stages

TO: Inputs to the adder are valid

Recall: Virtex-E CLB

CLB = 4 logic cells (LC) in two slices

LC: 4-input function generator, carry logic, storage ele't
80×120 CLB array on 2000E

T2: Stage 0 carry out (C1)
T4: Stage 1 carry out (C2)
T6: Stage 2 carry out (C3)
T8: Stage 3 carry out (C4)
10/16/2007

EECS150-Fa07 L15 addition

Adders (cont.)

2 delays to compute sum
but last carry not ready until 6 delays later

Ripple Adder

Ripple adder is inherently slow because, in general s7 must wait for c7 which must wait for c6 ...
$\boldsymbol{T} \alpha n$, Cost αn
How do we make it faster, perhaps with more cost?
Classic approach: Carry Look-Ahead
Or use a MUX !!!

Carry Select Adder

Extended Carry Select Adder

- What is the optimal \# of blocks and \# of bits/block?
- If \# blocks too large delay dominated by total mux delay
- If \# blocks too small delay dominated by adder delay per block

$\sqrt{\mathrm{N}}$ stages of $\sqrt{\mathrm{N}}$ bits	$\mathrm{T} \alpha \operatorname{sqrt}(\mathrm{N})$, Cost $\approx 2^{*}$ ripple + muxes

10/16/2007
EECS150-Fa07 L15 addition

Carry Select Adder Performance

- Compare to ripple adder delay:
$T_{\text {total }}=2 \operatorname{sqrt}(N) T_{F A}-T_{F A}$, assuming $T_{F A}=T_{M U X}$
For ripple adder $\mathrm{T}_{\text {total }}=\mathrm{N} \mathrm{T}_{\mathrm{FA}}$
"cross-over" at $\mathrm{N}=3$, Carry select faster for any value of $\mathrm{N}>3$.
- Is sqrt(N) really the optimum?
- From right to left increase size of each block to better match delays
- Ex: 64-bit adder, use block sizes [12 1110987 7]
- How about recursively defined carry select?

10/16/2007
EECS150-Fa07 L15 addition

What really happens with the carries

Carry Generate $\mathbf{G i}=\mathbf{A i} \mathbf{B i} \quad$ must generate carry when $A=B=1$
Carry Propagate $\mathrm{Pi}=\mathbf{A i}$ xor $\mathrm{Bi} \quad$ carry in will equal carry out here
All generates and propagates in parallel at first stage. No ripple.

Carry Kill / Prop / Gen example

Carry Look Ahead Logic

Carry Generate $\mathrm{Gi}=\mathrm{Ai} \mathrm{Bi} \quad$ must generate carry when $A=B=1$ Carry Propagate $\mathrm{Pi}=\mathrm{Ai}$ xor $\mathrm{Bi} \quad$ carry in will equal carry out here

Sum and Carry can be re-expressed in terms of generate/propagate:

Si $=A i$ xor Bi xor $\mathrm{Ci}=\mathrm{Pi}$ xor Ci

$C i+1=A i B i+A i C i+B i C i$

$$
\begin{aligned}
& =A i B i+C i(A i+B i) \\
& =A i B i+C i(A i \text { xor } B i) \\
& =G i+C i P i
\end{aligned}
$$

Gi

10/16/2007
EECS150-Fa07 L15 addition

All Carries in Parallel

Re-express the carry logic for each of the bits:
$C 1=G O+P O C O$
$C 2=G 1+P 1 C 1=G 1+P 1 G 0+P 1 P 0 C 0$
C3 $=$ G2 + P2 C2 $=$ G2 + P2 G1 + P2 P1 G0 + P2 P1 PO C0
$C 4=G 3+P 3 C 3=G 3+P 3 G 2+P 3 P 2 G 1+P 3 P 2 P 1 G 0+P 3 P 2 P 1 P 0 C 0$

Each of the carry equations can be implemented in a two-level logic network

Variables are the adder inputs and carry in to stage 0 !

CLA Implementation

Adder with Propagate and Generate Outputs

Increasingly complex logic

10/16/2007

EECS150-Fa07 L15 addition

G3

How do we extend this to larger adders?

- Faster carry propagation
- 4 bits at a time
- But still linear
- Can we get to log?
- Compute propagate and generate for each adder BLOCK

Cascaded Carry Lookahead

4 bit adders with internal carry lookahead
second level carry lookahead unit, extends lookahead to 16 bits
One more level to 64 bits

10/16/2007
EECS150-Fa07 L15 addition

So what about subtraction?

- Develop subtraction circuit using the same process
- Truth table for each bit slice
- Borrow in from slice of lesser significance
- Borrow out to slice of greater significance
- Very much like carry chain
- Homework exercise

Critical component of processor datapath
Inner-most "loop" of most computer instructions

Finite representation?

- What happens when $A+B>2^{N}-1 ?$
- Overflow
- Detect?
» Carry out
- What happens when

$$
A-B<0 ?
$$

- Negative numbers?
- Borrow out?

Number Systems

- Desirable properties:

- Efficient encoding (2^{n} bit patterns. How many numbers?)
- Positive and negative
» Closure (almost) under addition and subtraction
Except when overflow
» Representation of positive numbers same in most systems
» Major differences are in how negative numbers are represented
- Efficient operations
» Comparison: =, <, >
» Addition, Subtraction
" Detection of overflow
Which one did you learn in $2^{\text {nd }}$
- Algebraic properties?
» Closure under negation?
» $A==B$ iff $A-B==0$
- Three Major schemes:
- sign and magnitude
- ones complement
- twos complement

10/1t/2(excess notation)

Sign and Magnitude

High order bit is sign: $0=$ positive (or zero), $1=$ negative
Remaining low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits $=+/-2^{n-1}-1$
Representations for 0 ?

```
Operations: =, <, >, +, - ???
10/16/2007 EECS150-Fa07 L15 addition
```


Ones Complement

Bit manipulation:

simply complement each of the bits 0111 -> 1000

Algebraically ...
N is positive number, then \bar{N} is its negative 1 's complement

-7 in 1's comp.

Ones Complement on the number wheel

Subtraction implemented by addition \& 1's complement
Sign is easy to determine
Closure under negation. If A can be represented, so can - A
Still two representations of 0 !
If $A=B$ then is $A-B=0$?
Addifion is almost clockfofse

Twos Complement number wheel

Only one representation for 0
Addition and subtraction just as in unsigned case Simple comparison: $A<B$ iff $A-B<0$
One more negative number than positive number

- one number has no additive inverse

10/16/2007
EECS150-Fa07 L15 addition

Twos Complement (algebraically)
辟

How is addition performed in each number system?

- Operands may be positive or negative

Sign Magnitude Addition

Ones complement addition

Perform unsigned addition, then add in the end-around carry

4	0100	-4	1011
+ 3	0011	+ (-3)	1100
7	0111	-7	10111
End around carry $\quad \longrightarrow 1$			

Operands have different signs:
subtract smaller from larger and keep sign of the larger

4	0100	-4	1100			
-3	$\frac{1011}{1}$	0001		\quad	-3	0011
---:	:---					
1001						

When carry occurs

Why does end-around carry work?

Recall: $\bar{N}=\left(2^{n}-1\right)-N$

End-around carry work is equivalent to subtracting 2^{n} and adding 1

$$
\begin{aligned}
& M-N=M+\bar{N}=M+\left(2^{n}-1-N\right)=(M-N)+2^{n}-1 \quad(\text { when } M>N) \\
&-M+(-N)=\bar{M}+\bar{N}=\left(2^{n}-M-1\right)+\left(2^{n}-N-1\right) \quad M+N<2^{n-1} \\
&=2^{n}+\left[2^{n}-1-(M+N)\right]-1
\end{aligned}
$$

after end around carry:

$$
=2^{n}-1-(M+N)
$$

this is the correct form for representing $-(M+N)$ in 1's comp!

Twos Complement Addition

| Perform unsigned addition and | 4 | 0100 | -4 | 1100 |
| :--- | ---: | :--- | ---: | ---: | ---: |
| Discard the carry out. | +3 | $\frac{0011}{}$ | $+\frac{(-3)}{}$ | $\frac{1101}{11001}$ |

Overflow?

4	0100		-4	1100
-3	1101		+3	0011
1	10001		-1	1111

Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

10/16/2007
EECS150-Fa07 L15 addition

Twos Complement number wheel

$-\mathrm{M}+-\mathrm{N}$ where $\mathrm{N}+\mathrm{M} \leq 2 \mathrm{n}-1$
$-\mathrm{M}+\mathrm{N}$ when $\mathrm{N}>\mathrm{M}$
10/16/2007
EECS150-Fa07 L15 addition

2s Complement Overflow

$$
\begin{aligned}
& -M+N \text { when } N>M: \\
& M^{*}+N=\left(2^{n}-M\right)+N=2^{n}+(N-M) \\
& \text { Ignoring carry-out is just like subtracting } 2^{n}
\end{aligned} \quad \begin{aligned}
&-M+-N \text { where } N+M \leq 2^{n-1} \\
&-M+(-N)=M^{*}+N^{*}=\left(2^{n}-M\right)+\left(2^{n}-N\right) \\
&=2^{n}-(M+N)+2^{n}
\end{aligned}
$$

After ignoring the carry, this is just the right twos compl. representation for $-(M+N)$!

How can you tell an overflow occurred?
Add two positive numbers to get a negative number
or two negative numbers to get a positive number

10/16/2007

5	$\begin{array}{rl} 0 & 111 \\ 0 & 101 \end{array}$	-7	$\begin{aligned} 1000 \\ 100 \end{aligned}$
3	0011	-2	1100
-8	1000	7	10111
Ove		Ove	
5	$\begin{aligned} & 0000 \\ & 0101 \end{aligned}$	-3	$\begin{array}{r} 1111 \\ 1101 \end{array}$
2	0010	-5	1011
7	0111	-8	11000
No overflow		No overflow	

Overflow occurs when carry in to sign does not equal carry out 10/16/2007

Summary

- Circuit design for unsigned addition
- Full adder per bit slice
- Delay limited by Carry Propagation
» Ripple is algorithmically slow, but wires are short
- Carry select
- Simple, resource-intensive
- Excellent layout
- Carry look-ahead
- Excellent asymptotic behavior
- Great at the board level, but wire length effects are significant on chip
- Digital number systems
- How to represent negative numbers
- Simple operations
- Clean algorithmic properties
- 2 s complement is most widely used
- Circuit for unsigned arithmetic
- Subtract by complement and carry in
- Overflow when cin xor cout of sign-bit is 1

