
EECS 150 - Components and Design
Techniques for Digital Systems

Lec 15 – Addition, Subtraction, and
Negative Numbers

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

10/16/2007 EECS150-Fa07 L15 addition

Overview

• Recall basic positional notation
• Binary Addition

Full Adder (Boolean Logic Revisited)
• Ripple Carry
• Carry-select adder
• Carry lookahead adder
• Binary Number Representation

Sign & Magnitude, Ones Complement, Twos
Complement

10/16/2007 EECS150-Fa07 L15 addition

Manipulating representations of numbers

• Example (from 2nd grade)

• Sequence of decimal digits (radix 10)
• Position represents significance (most -> least)
• Carry into next position
• 3-to-2 conversion at each step
• Results may be one digit longer, but assumed you

could “make room” for it

5 3 9 6

+ 4 7 2 5

1

1

2

1

1

1

01

10/16/2007 EECS150-Fa07 L15 addition

Positional Notation
• Sequence of digits: Dk-1 Dk-2 …D0

represents the value
Dk-1Bk-1 + Dk-2Bk-2 + …+ D0 B0

where Di ∈ { 0, …, B-1 }

• B is the “base” or “radix” of the number system
• Example: 200410,
• Can convert from any radix to any other

– 11012 = 1310 = 0D16

– 1CE816 = 1·163 + 12·162 + 14·161 + 8·160 = 740010

– 4368 = 4·82 + 3·81 + 6·80 = 28610

10/16/2007 EECS150-Fa07 L15 addition

Computer Number Systems
• We all take positional notation for granted

– Dk-1 Dk-2 …D0 represents Dk-1Bk-1 + Dk-2Bk-2 + …+ D0 B0

where B ∈ { 0, …, B-1 }

• We all understand how to compare, add, subtract
these numbers

– Add each position, write down the position bit and possibly
carry to the next position

• Computers represent finite number systems
– Generally radix 2

• How do they efficiently compare, add, sub?
– How do we reduce it to networks of gates and FFs?

• Where does it break down?
– Manipulation of finite representations doesn’t behave like

same operation on conceptual numbers

10/16/2007 EECS150-Fa07 L15 addition

Unsigned Numbers - Addition

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7+8

+9

+10

+11

+12

+13

+14

+15

+

Example: 3 + 2 = 5

Unsigned binary addition

Is just addition, base 2

Add the bits in each position
and carry

0 0 1 1

+ 0 0 1 0

0 1 0 1

1

How do we build a combinational logic circuit to perform addition?

=> Start with a truth table and go from there

10/16/2007 EECS150-Fa07 L15 addition

Binary Addition: Half Adder

Ai
0
0
1
1

Bi
0
1
0
1

Sum
0
1
1
0

Carry
0
0
0
1

Ai
Bi 0 1

0

1

0 1

1 0

Sum = Ai Bi + Ai Bi
= Ai + Bi

Ai
Bi 0 1

0

1

0 0

10

Carry = Ai Bi

Half-adder Schematic

Carry

Sum A i

B i

But each bit position may have a carry in…

10/16/2007 EECS150-Fa07 L15 addition

Full-Adder (derivation)

S = CI xor A xor B

CO = B CI + A CI + A B = CI (A + B) + A B

0 0 1 1

+ 0 0 1 0

0 1 0 1

1

A

B

S

CinCo 0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

CI
0
1
0
1
0
1
0
1

S CO
A B

CI
0

1

00 01 11 10
0

1

1

0

1

0

0

1

A B
CI

0

1

00 01 11 10
0

0

0

1

0

1

1

1

S

CO

FA
3 unary

inputs

2 binary

outputs

0

10/16/2007 EECS150-Fa07 L15 addition

Full Adder

A

A

B

B
CI CO

A
B

CI
S

A

B

Ci

S

Co

Now we can connect them up to do multiple bits…

10/16/2007 EECS150-Fa07 L15 addition

Ripple Carry

+

A0 B0

S0C1

+

A3 B3

S3

+

A2 B2

S2

+

A1 B1

S1C2C3S4 ?

10/16/2007 EECS150-Fa07 L15 addition

Full Adder from Half Adders (little aside)

Alternative Implementation: 5 Gates

A B + CI (A xor B) = A B + B CI + A CI

Standard Approach: 6 Gates

A

AA

B

B
B CI

CI
S CO

Half
Adder

A

B

Half
Adder

A + B

CI

A + B + CIS S

COCO CI (A + B)A B
S

CO

10/16/2007 EECS150-Fa07 L15 addition

Delay in the Ripple Carry Adder
Critical delay: the propagation of carry from low to high order stages

A

A

B

B

CI CO

@0
@0

@0
@0

@N

@1

@1

@N+1

@N+2

late
arriving
signal

two gate delays
to compute CO

4 stage
adder

final sum and
carry

A 0

B 0

C 0

S 0 @2

A 1

B 1

C 1 @2

S 1 @3

A 2

B 2

C 2 @4

S 2 @5

A 3

B 3

C 3 @6

S 3 @7

C 4 @8

0

1

2

3

10/16/2007 EECS150-Fa07 L15 addition

Ripple Carry Timing
Critical delay: the propagation of carry from low to high order stages

1111 + 0001
worst case

addition

T0: Inputs to the adder are valid

T2: Stage 0 carry out (C1)

T4: Stage 1 carry out (C2)

T6: Stage 2 carry out (C3)

T8: Stage 3 carry out (C4)

2 delays to compute sum

but last carry not ready
until 6 delays later

T0 T2 T4 T6 T8

S0, C1 Valid S1, C2 Valid S2, C3 Valid S3, C4 Valid

10/16/2007 EECS150-Fa07 L15 addition

Recall: Virtex-E CLB
CLB = 4 logic cells (LC) in two slices
LC: 4-input function generator, carry logic, storage ele’t
80 x 120 CLB array on 2000E

16x1 synchronous RAM FF or latch

10/16/2007 EECS150-Fa07 L15 addition

Adders (cont.)
Ripple Adder

Ripple adder is inherently slow because, in general
s7 must wait for c7 which must wait for c6 …

T α n, Cost α n

How do we make it faster, perhaps with more cost?

FA

c0
a0b0

s0c1

c2c3c4c5c6c7

s7 s6

Or use a MUX !!!
Classic approach: Carry Look-Ahead

10/16/2007 EECS150-Fa07 L15 addition

Carry Select Adder

T = Tripple_adder / 2 + TMUX

COST = 1.5 * COSTripple_adder+ (n+1) * COSTMUX

0

1
c8

FA

0a4a5a6a7b7 b6 b5 b4
c0

a0b0

s0

a1a2a3b3 b2 b1

s1s2s3

FA

1a4a5a6a7b7 b6 b5 b4

1 0 1 01 0 1 0

s4s5s6s7

10/16/2007 EECS150-Fa07 L15 addition

Extended Carry Select Adder

• What is the optimal # of blocks and # of bits/block?
– If # blocks too large delay dominated by total mux delay
– If # blocks too small delay dominated by adder delay per block

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

4-bit Adder

a3-a0b3-b0

cincout

a11-a8b11-b8a15-a12b15-b12 b7-b4 a7-a4

bits N of stages N T α sqrt(N),
Cost ≈2*ripple + muxes

10/16/2007 EECS150-Fa07 L15 addition

Carry Select Adder Performance

• Compare to ripple adder delay:
Ttotal = 2 sqrt(N) TFA – TFA, assuming TFA = TMUX

For ripple adder Ttotal = N TFA

“cross-over” at N=3, Carry select faster for any value of N>3.

• Is sqrt(N) really the optimum?
– From right to left increase size of each block to better match delays
– Ex: 64-bit adder, use block sizes [12 11 10 9 8 7 7]

• How about recursively defined carry select?

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

4-bit Adder

a3-a0b3-b0

cincout

a11-a8b11-b8a15-a12b15-b12 b7-b4 a7-a4

10/16/2007 EECS150-Fa07 L15 addition

Announcements
• Reading Katz 5.6 and Appendix A
• Mid III will just stay put in final slot – no more

fussing with it.
• Project demo at Lab Lecture friday
• Don’t hedge on lab workload reporting

– It matters to us and is NOT a negative in your grade

• Lab5 | CP1 | CP2 crunch
– It should lighten
– Don’t hesitate to get guidance on the specifics of your

approach from the TAs. They are there to help.
– Lab5 solution walk-thru Friday after lab lecture

10/16/2007 EECS150-Fa07 L15 addition

What really happens with the carries

FA

c0
a0b0

s0c1

c2c3c4c5c6c7

s7 s6

A B Cout S

0 0 0 Cin

0 1 Cin ~Cin

1 0 Cin ~Cin

1 1 1 Cin

Carry action

kill
Propagate

propagate

generate

Carry Generate Gi = Ai Bi must generate carry when A = B = 1

Carry Propagate Pi = Ai xor Bi carry in will equal carry out here

Ai

Bi
Gi

Ai

Bi
Pi

All generates and propagates in parallel at first stage. No ripple.

10/16/2007 EECS150-Fa07 L15 addition

Carry Kill / Prop / Gen example

FA

0

s0

c2c3c4c5c6c7

s7 s6

1 11 00 10 00 11 10 10 0

GPPKPGPK

111010 11

10/16/2007 EECS150-Fa07 L15 addition

Carry Look Ahead Logic

Carry Generate Gi = Ai Bi must generate carry when A = B = 1

Carry Propagate Pi = Ai xor Bi carry in will equal carry out here

Si = Ai xor Bi xor Ci = Pi xor Ci

Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + Ci (Ai + Bi)

= Ai Bi + Ci (Ai xor Bi)

= Gi + Ci Pi

Sum and Carry can be re-expressed in terms of generate/propagate:

Gi

Ci
Pi

Ci
Pi

Si

Ci+1

10/16/2007 EECS150-Fa07 L15 addition

All Carries in Parallel

Re-express the carry logic for each of the bits:

C1 = G0 + P0 C0

C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0

Each of the carry equations can be implemented in a two-level logic
network

Variables are the adder inputs and carry in to stage 0!

10/16/2007 EECS150-Fa07 L15 addition

CLA Implementation

Adder with Propagate and
Generate Outputs

Increasingly complex logic

Pi @ 1 gate delay

Ci Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay

C0C0

C0

C0
P0P0

P0

P0

G0
G0

G0

G0

C1

P1

P1

P1

P1

P1

P1 G1

G1

G1

C2
P2

P2

P2

P2

P2

P2

G2

G2

C3

P3

P3

P3

P3

G3

C4

10/16/2007 EECS150-Fa07 L15 addition

How do we extend this to larger adders?

• Faster carry propagation
– 4 bits at a time

• But still linear
• Can we get to log?
• Compute propagate and generate for each adder BLOCK

44

4

A3-0 B3-0

S3-0

44

4

A7-4 B7-4

S7-4

44

4

A11-8 B11-8

S11-8

44

4

A15-12 B15-12

S15-12

10/16/2007 EECS150-Fa07 L15 addition

Cascaded Carry Lookahead

4 bit adders with internal carry lookahead

second level carry lookahead unit, extends lookahead to 16 bits

One more level to 64 bits

4-bit Adder

4 4

4

A [15-12] B [15-12] C 12 C 16

S [15-12]

P G
4-bit Adder

4 4

4

A [1 1-8] B [1 1-8] C 8

S [1 1-8]

P G
4-bit Adder

4 4

4

A [7-4] B [7-4] C 4

S [7-4]

P G
4-bit Adder

4 4

4

A [3-0] B [3-0] C 0

S [3-0]

P G

Lookahead Carry Unit
C 0

P 0 G 0 P 1 G 1 P 2 G 2 P 3 G 3 C 3 C 2 C 1

C 0

P 3-0 G 3-0
C 4

@3 @2

@0

@4

@4 @3 @2 @5

@7

@3 @2 @5

@8 @8

@3 @2

@5

@5 @3

@0

C 16

10/16/2007 EECS150-Fa07 L15 addition

Trade-offs in combinational logic design

• Time vs. Space Trade-offs
Doing things fast requires more logic and thus more space

Example: carry lookahead logic

• Simple with lots of gates vs complex with fewer

• Arithmetic Logic Units
Critical component of processor datapath

Inner-most "loop" of most computer instructions

10/16/2007 EECS150-Fa07 L15 addition

So what about subtraction?

• Develop subtraction
circuit using the same
process

– Truth table for each bit slice
– Borrow in from slice of lesser

significance
– Borrow out to slice of greater

significance
– Very much like carry chain

• Homework exercise

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7+8

+9

+10

+11

+12

+13

+14

+15

-

10/16/2007 EECS150-Fa07 L15 addition

Finite representation?

• What happens when
A + B > 2N - 1 ?

– Overflow
– Detect?

» Carry out

• What happens when
A - B < 0 ?

– Negative numbers?
– Borrow out?

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7+8

+9

+10

+11

+12

+13

+14

+15

-

10/16/2007 EECS150-Fa07 L15 addition

Number Systems
• Desirable properties:

– Efficient encoding (2n bit patterns. How many numbers?)
– Positive and negative

» Closure (almost) under addition and subtraction
• Except when overflow

» Representation of positive numbers same in most systems
» Major differences are in how negative numbers are represented

– Efficient operations
» Comparison: =, <, >
» Addition, Subtraction
» Detection of overflow

– Algebraic properties?
» Closure under negation?
» A == B iff A – B == 0

• Three Major schemes:
– sign and magnitude
– ones complement
– twos complement
– (excess notation)

Which one did you learn in 2nd

grade?

10/16/2007 EECS150-Fa07 L15 addition

Sign and Magnitude

High order bit is sign: 0 = positive (or zero), 1 = negative

Remaining low order bits is the magnitude: 0 (000) thru 7 (111)

Number range for n bits = +/- 2n-1 - 1

Representations for 0?

Operations: =, <, >, +, - ???

Example: N = 4

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6
+7-0

-1

-2

-3

-4

-5
-6

-7

0 100 = + 4

1 100 = - 4

+

-

10/16/2007 EECS150-Fa07 L15 addition

Ones Complement

N is positive number, then N is its negative 1's complement

N = (2n - 1) - N

Example: 1's complement of 7

-7 in 1's comp.

Bit manipulation:

simply complement each of the bits

0111 -> 1000

2 10000

-1 - 00001

1111

-7 - 0111

1000

4

Algebraically …

10/16/2007 EECS150-Fa07 L15 addition

Ones Complement on the number wheel

Subtraction implemented by addition & 1's complement
Sign is easy to determine
Closure under negation. If A can be represented, so can -A
Still two representations of 0!

If A = B then is A – B == 0 ?
Addition is almost clockwise advance, like unsigned

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6
+7-7

-6

-5

-4

-3

-2
-1

-0

0 100 = + 4

1 011 = - 4

+

-

10/16/2007 EECS150-Fa07 L15 addition

Twos Complement number wheel

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6
+7-8

-7

-6

-5

-4

-3
-2

-1

0 100 = + 4

1 100 = - 4

+

-

Easy to determine sign (0?)
Only one representation for 0
Addition and subtraction just as in unsigned case
Simple comparison: A < B iff A – B < 0
One more negative number than positive number

- one number has no additive inverse

10/16/2007 EECS150-Fa07 L15 addition

Twos Complement (algebraically)
N* = 2n - N

Example: Twos complement of 7

2 = 10000

7 = 0111

1001 = repr. of -7

Example: Twos complement of -7

4

2 = 10000

-7 = 1001

0111 = repr. of 7

4

sub

sub

Bit manipulation:
Twos complement: take bitwise complement and add one

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)

10/16/2007 EECS150-Fa07 L15 addition

How is addition performed in each
number system?

• Operands may be positive or negative

10/16/2007 EECS150-Fa07 L15 addition

Sign Magnitude Addition

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1011

1111

result sign bit is the
same as the operands'
sign

4

- 3

1

0100

1011

0001

-4

+ 3

-1

1100

0011

1001

Operand have same sign: unsigned addition of magnitudes

Operands have different signs:

subtract smaller from larger and keep sign of the larger

10/16/2007 EECS150-Fa07 L15 addition

Ones complement addition

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1011

1100

10111

1

1000

4

- 3

1

0100

1100

10000

1

0001

-4

+ 3

-1

1011

0011

1110

End around carry

End around carry

Perform unsigned addition, then add in the end-around carry

10/16/2007 EECS150-Fa07 L15 addition

When carry occurs

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6
+7-7

-6

-5

-4

-3

-2
-1

-0

0 100 = + 4

1 011 = - 4

+

-

M – N where M > N

-M - N

10/16/2007 EECS150-Fa07 L15 addition

Why does end-around carry work?

End-around carry work is equivalent to subtracting 2n and adding 1

M - N = M + N = M + (2 - 1 - N) = (M - N) + 2 - 1n n (when M > N)

-M + (-N) = M + N = (2 - M - 1) + (2 - N - 1)

= 2 + [2 - 1 - (M + N)] - 1

n n

n n M + N < 2
n-1

after end around carry:

= 2 - 1 - (M + N)
n

this is the correct form for representing -(M + N) in 1's comp!

N = (2n - 1) - NRecall:

10/16/2007 EECS150-Fa07 L15 addition

Twos Complement Addition

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

Perform unsigned addition and

Discard the carry out.

Overflow?

10/16/2007 EECS150-Fa07 L15 addition

Twos Complement number wheel

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6
+7-8

-7

-6

-5

-4

-3
-2

-1

0 100 = + 4

1 100 = - 4

+

-

-M + -N where N + M ≤ 2n-1

-M + N when N > M

10/16/2007 EECS150-Fa07 L15 addition

2s Comp: ignore the carry out

-M + N when N > M:
M* + N = (2 - M) + N = 2 + (N - M)

n n

Ignoring carry-out is just like subtracting 2n

-M + -N where N + M ≤ 2n-1

-M + (-N) = M* + N* = (2 - M) + (2 - N)

= 2 - (M + N) + 2n n

After ignoring the carry, this is just the right twos compl.
representation for -(M + N)!

n n

10/16/2007 EECS150-Fa07 L15 addition

2s Complement Overflow

Add two positive numbers to get a negative number

or two negative numbers to get a positive number

5 + 3 = -8! -7 - 2 = +7!

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1

0000
0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110
1111

+0
+1

+2

+3

+4

+5
+6

+7-8

-7

-6

-5

-4
-3

-2
-1

How can you tell an overflow occurred?

10/16/2007 EECS150-Fa07 L15 addition

2s comp. Overflow Detection

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow

Overflow occurs when carry in to sign does not equal carry out
10/16/2007 EECS150-Fa07 L15 addition

2s Complement Adder/Subtractor

A - B = A + (-B) = A + B + 1

A B

CO

S

+ CI

A B

CO

S

+ CI

A B

CO

S

+ CI

A B

CO

S

+ CI

0 1

Add/Subtract

A 3 B 3 B 3

0 1

A 2 B 2 B 2

0 1

A 1 B 1 B 1

0 1

A 0 B 0 B 0

Sel Sel Sel Sel

S 3 S 2 S 1 S 0

Overflow

10/16/2007 EECS150-Fa07 L15 addition

Summary
• Circuit design for unsigned addition

– Full adder per bit slice
– Delay limited by Carry Propagation

» Ripple is algorithmically slow, but wires are short
• Carry select

– Simple, resource-intensive
– Excellent layout

• Carry look-ahead
– Excellent asymptotic behavior
– Great at the board level, but wire length effects are significant on chip

• Digital number systems
– How to represent negative numbers
– Simple operations
– Clean algorithmic properties

• 2s complement is most widely used
– Circuit for unsigned arithmetic
– Subtract by complement and carry in
– Overflow when cin xor cout of sign-bit is 1

