

### **EECS 150 - Components and Design Techniques for Digital Systems**

#### Lec 12 - Timing

**David Culler Electrical Engineering and Computer Sciences** University of California, Berkeley

http://www.eecs.berkeley.edu/~culler http://www-inst.eecs.berkeley.edu/~cs150

Lec12 EECS150 Fa07

#### **Outline**

- Performance Limits of Synchronous Systems
- Delay in logic gates
- Delay in wires
- · Delay in combinational networks
- Clock Skew
- Delay in flip-flops
- Glitches

10-4-2007

#### Lec12 EECS150 Fa07

2



1





#### · All wires, except clock, may be multiple bits wide.

• Registers (reg)

10-4-2007

- collections of flip-flops
- clock
  - distributed to all flip-flops
  - typical rate? 10-4-2007
- Lec12 EECS150 Fa07

optional

3

Combinational Logic Blocks (CL)

- output only a function of inputs

· Particular inputs/outputs are

- no internal state

Optional Feedback

### **General Model of Synchronous Circuit**



- How do we measure performance?
  - operations/sec?
  - cycles/sec?
- What limits the clock rate?
- What happens as we increase the clock rate?

#### **Limitations on Clock Rate**



1 Logic Gate Delay



What are typical delay values?



• Both times contribute to limiting the clock period.

- What must happen in one clock cycle for correct operation?
- Assuming perfect clock distribution (all flip-flops see the clock at the same time):

#### **Example: Parallel-Serial Converter**



#### **General Model of Synchronous Circuit**



#### **Recall L2: Transistor-level Logic Circuits**



10-4-2007

7

All signals must be ready and "setup" before rising edge of clock. 10-4-2007
Lec12 EECS150 Fa07

#### **Qualitative Analysis of Logic Delay**



#### **Gate Switching Behavior**





#### Gate Delay due to fan out



• The delay of a gate is proportional to its output capacitance. Because, gates #2 and 3 turn on/off at a later time. (It takes longer for the output of gate #1 to reach the switching threshold of gates #2 and 3 as we add more output capacitance.)

| 10-4-2007 | Lec12 EECS150 Fa07 | 13 |   |
|-----------|--------------------|----|---|
|           |                    |    |   |
|           |                    |    |   |
|           |                    |    | 1 |

# What is the delay through arbitrary combinational logic?



#### Gate Delay with a general circuit

#### • "Fan-in"

- Does it affect the delay of the individual gate?
- When does the gate begin its transition?



- What is the delay in this circuit?
- *Critical Path:* the path with the maximum delay, from any input to any output.
  - In general, we include register set-up and clk-to-Q times in critical path calculation.
- Why do we care about the critical path?

```
10-4-2007
```

Lec12 EECS150 Fa07



14

#### Announcements

- Reading: K&B 3.5 6.1.5-6.2.3 (were in 9/20 assignment)
- K&B 10.6 is great protocol example – We'll do several of those as we go
- HW 5 out today (due 10/12)
- Class survey
- · Lab partners

#### **Delay in Flip-flops**





#### **Wire Delay**



#### **Architectural Level Delay**



19

17

#### Modern rule of thumb

- Transistors are cheap
  - And their local wires
- Wire is what counts
- Often pays to do extra local computation (gates) to reduce wire delay

#### **Clock Skew**



## **Clock Skew Constraints**





- If clock period T =  $T_{CL}+T_{setup}+T_{clk\rightarrow Q}$ , circuit will fail – Delay relative to CLK = T<sub>skew</sub> + T<sub>CL</sub>+T<sub>setup</sub>+T<sub>clk→Q</sub>
- Therefore:

10-4-2007

1. Control clock skew

a) Careful clock distribution. Equalize path delay from clock source to all clock loads by controlling wires delay and buffer delay. b) don't "gate" clocks.

- 2.  $T \ge T_{CL} + T_{setup} + T_{clk \rightarrow Q}$  + worst case skew.
- Most modern large high-performance chips (microprocessors) control end to end clock skew to a few tenths of a nanosécond.

#### Time to ask clarifying questions



**Other effects of Delays on Combinational** Logic

10-4-2007 Lec12 EECS150 Fa07 25 10-4-2007 Lec12 EECS150 Fa07 26

### **Time Behavior of Combinational Networks**

- Waveforms ٠
  - Visualization of values carried on signal wires over time
  - Useful in explaining sequences of events (changes in value)
- Simulation tools are used to create these waveforms ٠
  - Input to the simulator includes gates and their connections
  - Input stimulus, that is, input signal waveforms
- Some terms
  - Gate delay-time for change at input to cause change at output
    - » Min delay-typical/nominal delay-max delay
    - » Careful designers design for the worst case
  - Rise time-time for output to transition from low to high voltage
  - Fall time-time for output to transition from high to low voltage
  - Pulse width-time an output stays high or low between changes

#### **Momentary Changes in Outputs**

- · Can be useful—pulse shaping circuits
- Can be a problem—incorrect circuit operation (glitches/hazards)
- · Example: pulse shaping circuit



#### **Oscillatory Behavior**

• Another pulse shaping circuit



#### **Types of Hazards**

- Static 1-hazard
  - Input change causes output to go from 1 to 0 to 1

#### • Static 0-hazard

- INput change causes output to go from 0 to 1 to 0
- Dynamic hazards
  - Input change causes a double change from 0 to 1 to 0 to 1 OR from 1 to 0 to 1 to 0



- Hazards/glitches: unwanted switching at the outputs
  - Occur when different paths through circuit have different propagation delays
    - » As in pulse shaping circuits we just analyzed
  - Dangerous if logic causes an action while output is unstable
    - » May need to guarantee absence of glitches
- Usual solutions
  - 1) Wait until signals are stable (by using a clock): preferable (easiest to design when there is a clock – synchronous design)
  - 2) Design hazard-free circuits: sometimes necessary (clock not used asynchronous design)

10-4-2007

Lec12 EECS150 Fa07



30

#### **Static Hazards**

- Due to a literal and its complement momentarily taking on the same value
  - Thru different paths with different delays and converging
- May cause an output that should have stayed at the same value to momentarily take on the wrong value
- Example:





0

0 0 1

0

0

0

10-4-2007

### **Dynamic Hazards**

- Due to the same versions of a literal taking on opposite values
  - Thru different paths with different delays and reconverging
- May cause an output that was to change value to change 3 times instead of once
- Example:





### **Eliminating Static Hazards**

• Following 2-level logic function has a hazard, e.g., when inputs change from ABCD = 0101 to 1101



#### **Dynamic Hazards**



#### **Eliminating Dynamic Hazards**



- Very difficult!
- A circuit that is static hazard free can still have dynamic hazards
- Best approach:
  - Design critical circuits to be two level and eliminate all static hazards
  - OR, use good clocked synchronous design style

## Ø

Our old friend...

#### **Protocols**

 Specified communication and coordination Parallel to Serial Converter between distinct subsystems xЗ x2 x1 LD x0 · Realized by cooperating state machines · Examples everywhere in digital design - Rate matching - Bus protocols » Memory, chip-to-chip, I/O, ... clk - Arbitration for a shared resource - Serial protocols · No "protocol" between FF's - Link protocols FSN · Every cycle they all move together - Network protocols Syncronous or asynchronous • Delays, rates, communication all designed together. Parallel or serial • 2-party or multi-party 10-4-2007 Lec12 EECS150 Fa07 37 10-4-2007 Lec12 EECS150 Fa07 38 **Simple Protocol Example Another Protocol Example** Fragment of producer FSM Fragment of producer FSM wait ~done Producer Producer done Vrite/ready Write/read done ready ready Register Register Fragment of consumer FSM Fragment of consumer FSM wait ~ready Consumer Consumer readv wait ~read read/ ready read/done • 1-way communication protocol • 2-way handshake No handshake · Assumes consumer is always ready to receive · Assumes consumer is always ready to receive Lec12 EECS150 Fa07 39 40 10-4-2007 10-4-2007 Lec12 EECS150 Fa07

#### **Summary**



- All gates have delays
  - RC delay in driving the output
- Wires are distributed RCs
  - Delays goes with the square of the length
- Source circuits determines strength – Serial vs parallel
- Delays in combinational logic determine by
  - Input delay
  - Path length
  - Delay of each gate along the path
  - Worst case over all possible input-outputs
- Setup and CLK-Q determined by the two latches in flipflop
- Clock cycle :  $T_{cycle} \ge T_{CL} + T_{setup} + T_{clk \rightarrow Q}$  + worst case skew
- Delays can introduce glitches in combinational logic
- Subsystems glued together via protocols
  - Delays, rates, design partitioning

| 10-4-2007 | Lec12 EECS150 Fa07 | 41 |
|-----------|--------------------|----|
|           |                    |    |
|           |                    |    |