

EECS 150 - Components and Design Techniques for Digital Systems

Lec 11 – Project Introduction

David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

> http://www.eecs.berkeley.edu/~culler http://inst.eecs.berkeley.edu/~cs150

iPhone

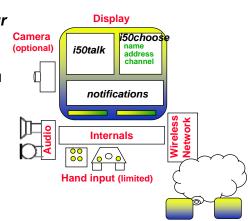
10/2/2007

EECS 150, Fa07, Lec 11-project

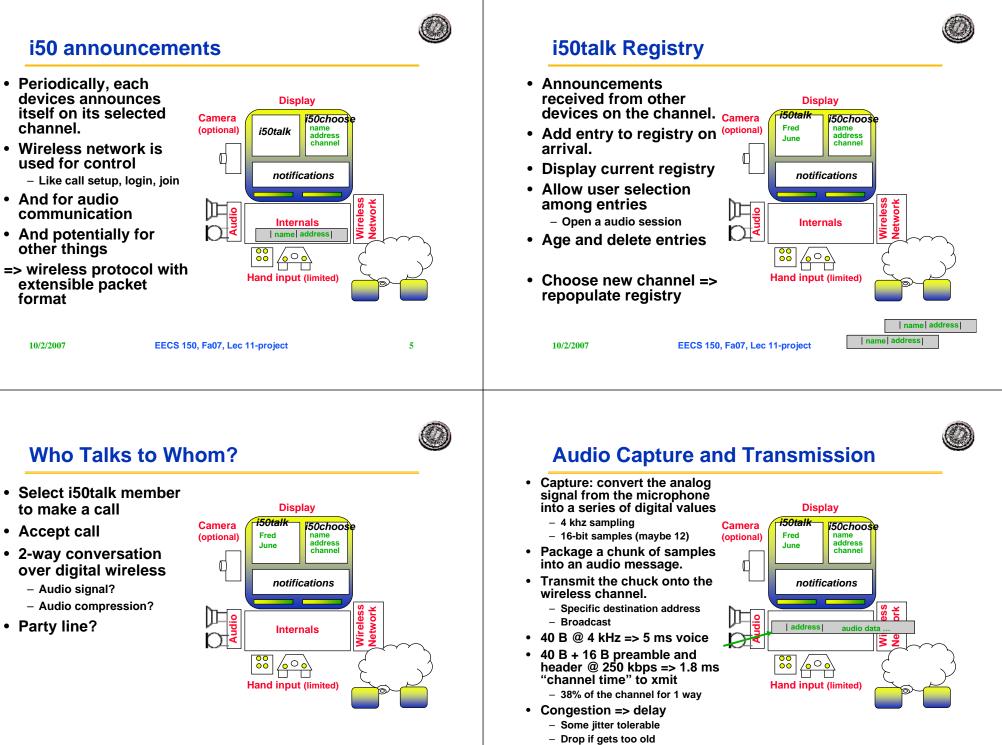
2

I50phone Concept

- i50choose
 - Define and present local configuration
 - » Name, addr
 - » channel, ...
 - Announce to chosen group
- i50talk
 - Collective and individual info about current group
 - Constructed from announcements
 - Select 2-way sessions
- Notifications and status
 - Useful information about what is going on
- Extensions & Options


Display Camera (optional) Isotalk isotalk notifications Network Netwo

i50choose

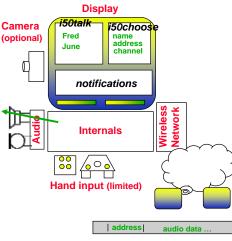

- Configure and display various aspects of your local device
- Wireless channel

10/2/2007

 Determines set of potential participants

10/2/2007

10/2/2007


EECS 150, Fa07, Lec 11-project

Audio Reception and Presentation

Receive a chunk of audio samples in an audio message. Camera (prional) Display *Sochoo* Fred

- Drive the speaker @ a constant rate
 - 4 kHz
 - DAC digital to analog
- Buffer enough incoming audio data that can maintain smooth playback

10/2/2007

EECS 150, Fa07, Lec 11-project

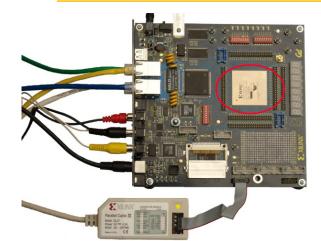
Functional Elements

- Construct Local Configuration
- Render display elements
- Announce Self to Group as Configured
- Maintain Registry of announcements
- Capture, packetize, transmit RT Audio
- Receive and Play RT Audio packets
- Play digital audio files
- Capture button & Cursor actions
- Receive / Transmit digital audio files (???)
- Transmit and Receive button & cursor actions (?)

Extensions

- Session record and playback
- Teleconferencing
- Ring tones
- Audio effects
- Background
- Multisource mixing
- Registry images
- Video effects
- Game elements
- Text exchange

~ '	•	~		-
 0/	21	20	JU	/

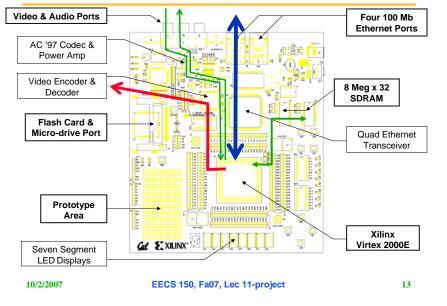

10/2/2007

EECS 150, Fa07, Lec 11-project

9

CaLinx2 – Your EECS150 ...

Focus so far has been on constructing the combinational logic, storage elements, and interconnect to form useful synchronous systems



10

Extending digital design

Getting from here to there

- Week 6 Lab 5: Network Digital Audio
 - Spool winamp stream from ethernet to audio codec - Tools: Chipscope.
- Week 7 CP 1: RT audio record and replay - Audio capture on button press from Mic to RAM.
 - » Light LED when speaking is active - Audio play on button press from RAM to speaker
- Week 8 CP 2: Display
 - Render canned source to video using Block SRAM
 - Build basic display capability
- Week 9-10 CP 3: Wireless
 - Stream RT audio to and from 15.4 radio
- Week 11 CP4: Basic i50phone - Wireless audio 2-way line with GUI
- Week 12-13: i50phone+
 - Select option that you will implement
- Week 14: Final i50phone+ Project Checkoff
- Week 15: Writeup the Report

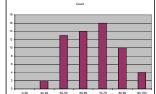
10/2/2007

EECS 150, Fa07, Lec 11-project

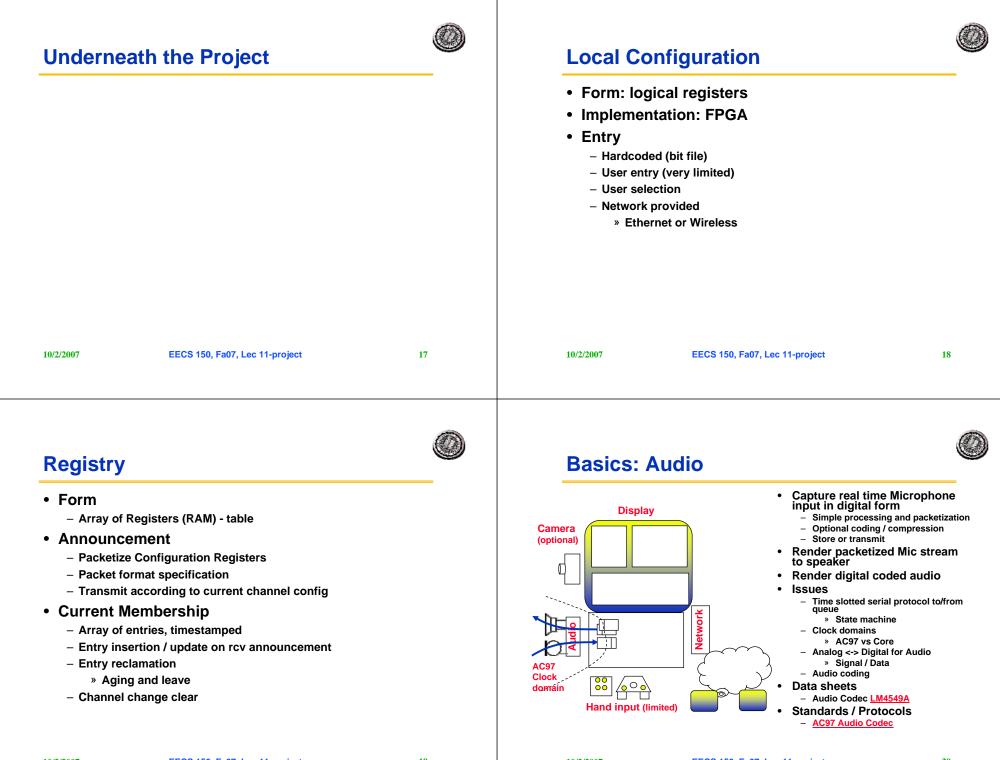
15

- **Over Wireless network**
- IEEE 802.15.4 Personal Area Network
- **ADC channels**
- Simple display
- Serial interface

10/2/2007

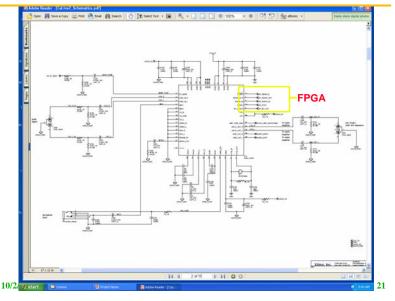

EECS 150, Fa07, Lec 11-project

Announcements

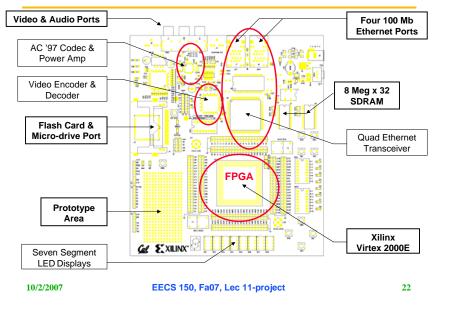

- Reading for Today: K&B 10.4.1-3
- Mid Terms
 - Mean: 70, Median: 71, Mode: 80, Max: 97
 - Regrade policy: submit written request for grading correction by Friday 2pm. We will review and make final decision.
 - Special offer: Reclaim 20% of points lost by correcting your mid term and turning it in F@2pm.

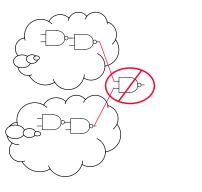
Range	%	Count
0-39	0%	0
40-49	3%	2
50-59	22%	13
60-69	24%	14
70-79	27%	16
80-89	17%	10
90-100	7%	4

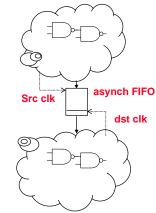
- HWs will provide include review material
- · Discuss scheduling of Mid III
- · No discussion sections this week
- · Friday 9am will no longer be held


EECS 150, Fa07, Lec 11-project

10/2/2007

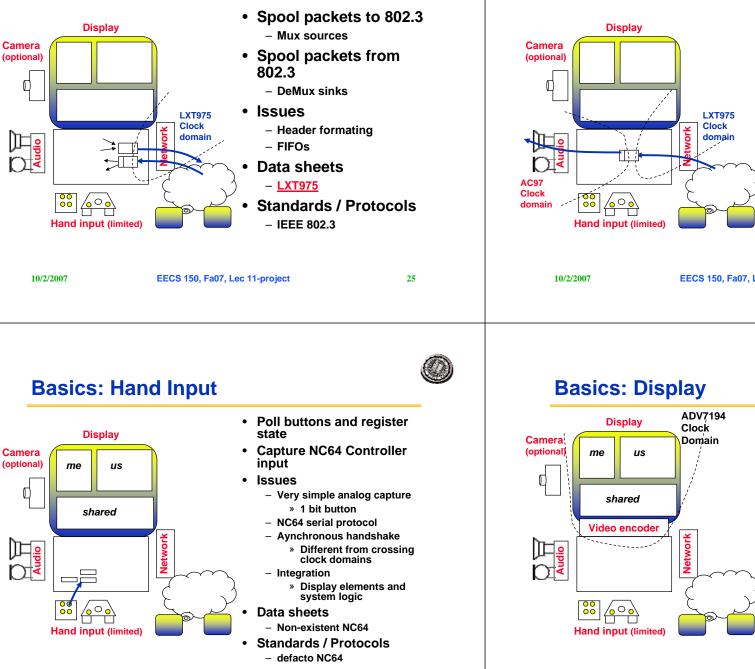

Calynx2: Audio


Clock Domain


- Wikipedia: A clock domain crossing (CDC), or simply clock crossing, is when a signal crosses from one clock domain into another. If a signal does not assert long enough and is not registered, it may appear <u>asynchronous</u> on the incoming clock boundary.
- Clock domain is a collection of digital devices (gates, FFs, registers) operating on a common clock.
- Everything we've learned about synchronous systems is WITHIN a clock domain.
- The key is dealing with multiple clock domains is crossing the bopundaries
 - to be very explicit where and how

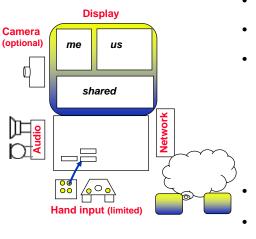
Clock Domains in EECS150

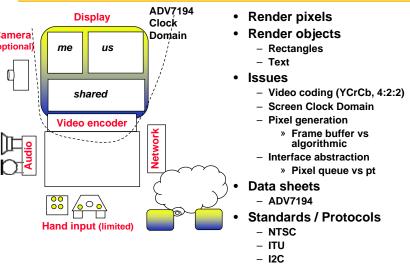
10/2/2007



Basics: Network Ethenet

Lab 5

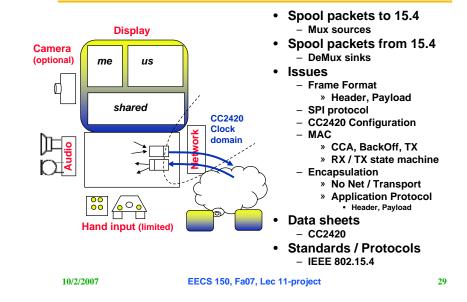

10/2/2007



- Use the FPGA and its asynch **FIFO** primitive to cross two clock domains
- No FPGA storage elements
- Ethernet Header
- Packet formats
- MPEG encoded digital audio

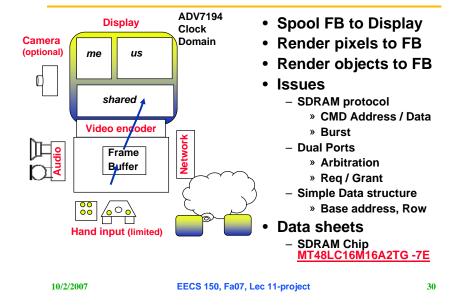
EECS 150, Fa07, Lec 11-project

26



EECS 150, Fa07, Lec 11-project

Basics: Network Wireless



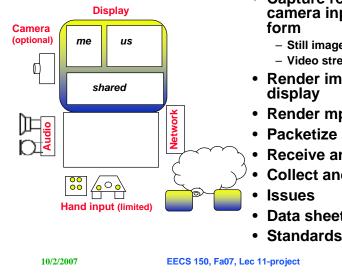
FA07 RAM

- We'll use simpler block RAM "object buffer" in Check Pt 2.
 - Screen positions point to character map
- · We'll bring SDRAM in later as audio storage
 - Unencoded digital audio streams
 - MPEG coded ring tones, etc.

Basics: Frame Buffer

Real Time Audio

- Capture and Packetize
- "Silence" suppression
 - Fixed time window per packet => curtail and send
- Bandwidth
 - 8 KHz sampling x 8 bits => 64 kbps , 8 kBps
 » 20% of channel
 - One reasonable active voice per channel
 - 64 byte packet => 1/128 sec => 8 ms of voice
 - ~100 byte frame @ 40 kB/s => 2.5 ms of radio
- Contention Protocol
 - Limit generation rate (min interval)
 - Should have reasonable bidirectional voice
 - May want to suppress low gain origination during active reception
 - Favor reception over transmission
 - Transmit only if "louder" than recent receive window
- Audio compression


10/2/2007

- Provide coding field in packet

32

Basics: Camera

- Capture real time camera input in digital
 - Still images
 - Video stream
- Render images to
- Render mpeg
- Packetize and transmit
- **Receive and render**
- Collect and store
- Data sheets
- Standards / Protocols

Options

- Share tones, songs
- Audio effects
- Integrate game
- Images
- Video
- Synthesizer capabilities
- SMS text

10/2/2007

EECS 150, Fa07, Lec 11-project

Getting from here to there (1/3)

33

- Week 6 Lab 5: Network Digital Audio (Udam)
 - Spool winamp stream from ethernet to audio codec
 - Given ethernet black box and AC97 black box, build connections to
 - Asynch FIFO – Key Learnings:
 - » mediating two peripheral clock domains and associated protocols through a synchronous intermediate
 - » Timing
 - Tools: Chipscope.
- Week 7 CP 1: RT audio record and replay (Udam)
 - Audio capture on button press from Mic to RAM.
 - » Light LED when speaking is active
 - Audio play on button press from RAM to speaker
 - Key learnings:
 - » Understanding a synchronous serial protocol
 - · Happens to be a weird slotted protocol
 - » Digitization of an analog signal Can we look at the data?
 - » Simple digital signal processing
 - · Detect start of speaking. Detect silence. Track signal energy.
 - Packetization

35

Getting from here to there (2/3)

- Week 8 CP 2: Display (Allen)
 - Render canned source to video using Block SRAM
 - » Simpler than SDRAM frame buffer
 - Build basic display capability
 - Key learnings
 - » NTSC, ITU, Display representation
 - » Synching with external source
- Week 9-10 CP 3: Wireless (Shah, Ofer)
 - Stream RT audio to and from 15.4 radio
 - Key learnings
 - » SPI protocol, wireless MAC, nasties of wireless, interplay of CBR (audio) and asynchrony (network), bandwidth management

34

Getting from here to there (3/3)

- Week 11 CP4: Basic i50phone (Shauki)
 - Wireless audio 2-way line
 - Integration of many subsystems through registers, queues, memory data structures, and state machines
 - Basic display and functionality
 - Starts after Midterm II and checked off before Tday
- Week 12-13: i50phone+ (Sarah)
 - Select option that you will implement
 - SDRAM Storage (Allen)
 - » Stored audio streams
 - » SDRAM controller and memory arbiter
 - Key learnings
 - Bus protocols, memory, implementing complex sequencing in FSMs
- Week 14: Final i50phone+ Project Checkoff
- Week 15: Writeup the Report

10/2/2007	EECS 150, Fa07, Lec 11-project	37