
9/25/07 EECS150 fa07 1

EECS 150 - Components and Design
Techniques for Digital Systems

Lec 9 – Putting it all together…
9-25-07

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley
http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

9/25/07 EECS150 fa07 2

Outline
• Top-to-bottom

– What have we covered so far?

• Combo Lock example
– FSM to logic
– Mapping to FPGAs

• Announcements
• Counters revisited
• Another example – Ant Brain

9/25/07 EECS150 fa07 3

Digital design - as we’ve seen it

System specification (in words)

Datapath specification Controller specification

Comb. logic operations

Verilog dataflow

Gates / LUTs

FSM generation

STT / STD / Encoding

Logic: nextstate/outputs

Verilog behavior

Gates / LUTs / FF

ARTART

Lec 5,6,7: FSM

Lec 6-7: Modeling FSMs

Lec 3,8: Logic min.

Lec 4: HDL, Labs

Lec 2, 3: CMOS, FPGA

Lec 3,8: Logic

Lec 4: HDLs, Labs

Lec 2, 3: CMOS, FPGA

9/25/07 EECS150 fa07 4

Where are we now?
• (Synchronous) Sequential systems

• Given datapath and control specifications
– Generate comb. logic for datapath

» Minimize logic for efficient implementation
– Generate FSM for controller

» Choose implementation, encoding
» Generate logic for nextstate and output

– Describe datapath and controller in Verilog
» structure, dataflow and behavior
» Map onto gates or LUTs

• Seems like a good point to “test” your
understanding!

9/25/07 EECS150 fa07 5

scope of CS 150

Representation of digital designs

• Physical devices (transistors, relays)
• Switches
• Truth tables
• Boolean algebra
• Gates
• Waveforms
• Finite state behavior
• Register-transfer behavior
• Concurrent abstract specifications

more depth than 61C

focus on building systems

9/25/07 EECS150 fa07 6
X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' Y' X • Y X' • Y' (X • Y) + (X' • Y')
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X • Y) + (X' • Y') ≡ X = Y

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is
true when the variables X
and Y have the same value
and false, otherwise

Logic Functions and Boolean Algebra
• Any logic function that can be expressed as a

truth table can be written as an expression in
Boolean algebra using the operators: ', +, and •

9/25/07 EECS150 fa07 7

time

change in Y takes time to "propagate" through gates

Waveform View of Logic Functions
• Just a sideways truth table

– But note how edges don't line up exactly
– It takes time for a gate to switch its output!

9/25/07 EECS150 fa07 8

An algebraic structure

• An algebraic structure consists of
– a set of elements B
– binary operations { + , • }
– and a unary operation { ' }
– such that the following axioms hold:

1. set B contains at least two elements, a, b, such that a ≠ b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a' = 1 a • a' = 0

9/25/07 EECS150 fa07 9

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing Methodologies (cont’d)
• Definition of terms

– clock: periodic event, causes state of storage element to
change; can be rising or falling edge, or high or low level

– setup time: minimum time before the clocking event by which
the input must be stable (Tsu)

– hold time: minimum time after the clocking event until which
the input must remain stable (Th)

9/25/07 EECS150 fa07 10

Axioms & theorems of Boolean algebra
• Identity

1. X + 0 = X 1D. X • 1 = X

• Null
2. X + 1 = 1 2D. X • 0 = 0

• Idempotency:
3. X + X = X 3D. X • X = X

• Involution:
4. (X')' = X

• Complementarity:
5. X + X' = 1 5D. X • X' = 0

• Commutativity:
6. X + Y = Y + X 6D. X • Y = Y • X

• Associativity:
7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

9/25/07 EECS150 fa07 11

Axioms and theorems of Boolean algebra
(cont’d)
• Distributivity:

8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)
• Uniting:

9. X • Y + X • Y' = X 9D. (X + Y) • (X + Y') = X
• Absorption:

10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y') • Y = X • Y 11D. (X • Y') + Y = X + Y

• Factoring:
12. (X + Y) • (X' + Z) = 12D. X • Y + X' • Z =

X • Z + X' • Y (X + Z) • (X' + Y)
• Concensus:

13. (X • Y) + (Y • Z) + (X' • Z) = 13D. (X + Y) • (Y + Z) • (X' + Z) =
X • Y + X' • Z (X + Y) • (X' + Z)

9/25/07 EECS150 fa07 12

Axioms and theorems of Boolean algebra
(cont’)

• de Morgan's:
14. (X + Y + ...)' = X' • Y' • ... 14D. (X • Y • ...)' = X' + Y' + ...

• generalized de Morgan's:
15. f'(X1,X2,...,Xn,0,1,+,•) = f(X1',X2',...,Xn',1,0,•,+)

• establishes relationship between • and +

9/25/07 EECS150 fa07 13

Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk

9/25/07 EECS150 fa07 14

Sequential Logic Implementation
• Models for representing sequential circuits

– Finite-state machines (Moore and Mealy)
– Representation of memory (states)
– Changes in state (transitions)

• Design procedure
– State diagrams
– Implementation choice: counters, shift registers, FSM
– State transition table
– State encoding
– Combinational logic

» Next state functions
» Output functions

9/25/07 EECS150 fa07 15

Abstraction of State Elements

• Divide circuit into combinational logic and state
• Localize feedback loops and make it easy to break cycles
• Implementation of storage elements leads to various

forms of sequential logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

9/25/07 EECS150 fa07 16

Forms of Sequential Logic
• Asynchronous sequential logic – state changes

occur whenever state inputs change (elements
may be simple wires or delay elements)

• Synchronous sequential logic – state changes
occur in lock step across all storage elements
(using a periodic waveform - the clock)

Clock

9/25/07 EECS150 fa07 17

• States: determined by possible values in
sequential storage elements

• Transitions: change of state
• Clock: controls when state can change by

controlling storage elements

• Sequential Logic
– Sequences through a series of states
– Based on sequence of values on input signals
– Clock period defines elements of sequence

In = 0

In = 1

In = 0In = 1

100

010

110

111001

FSM Representations

9/25/07 EECS150 fa07 18

Example: FSM Design – Combo lock
• Combination lock

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control clock

datapath Controller

9/25/07 EECS150 fa07 19

reset

open/closed

new equal

controller
mux
control

clock

reset

open/closed

new equal

mux
control

clock

comb. logic

state

special circuit element,
called a register, for
remembering inputs
when told to by clock

Combo lock - controller
implementation
• Implementation of the controller

9/25/07 EECS150 fa07 20

Combo Lock - State Encoding
reset new equal state nstate mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – closed
0 – – OPEN OPEN – open
0 – – ERR ERR – closed

Symbolic states
and outputs

Mux control:
C1 = 01, C2 = 10, C3 = 11 (pre-
established)

State encoding:
S1 = 001, S2 = 010, S3 = 011,
OPEN = 111, Error = 000

Output encoding:
Closed = 0, Open = 1

One possible encoding

reset

011

out=0

out=0
mux=01 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

001 010 111

000

out=0
mux=10 equal

& new

out=0
mux=11 equal

& new

out=1

Concrete encoding

9/25/07 EECS150 fa07 21

FSM implementation
• Steps for the hardware designer:

– Word specification
– FSM design
– Encoding
– Verification!

• At this point, hand over to synthesis tools:
– Describe FSM behavior in Verilog
– Synthesize controller

• Good encoding
– Better performance
– Fewer state bits
– Possibility of state minimization
– Tools also try to figure this out

For this example, go through the logic synthesis steps
(ideally, tools take care of all this)… 9/25/07 EECS150 fa07 22

Example: Combo Lock

------110--0
------101--0
------100--0
0--000000--0
1--111111--0
011111011110
011000011010
011011011-00
010011010110
010000010010
010010010-00
001010001110
001000001010
001001001-00
0--001-----1
(o)(m1 m0)(n2 n1 n0)(s2 s1 s0)(e)(n)(r)
openmuxnstatestateequalnewreset

nextstate (n2 n1 n0):
n2 = ~r (n e s1 s0 + s2)
n1 = ~r (n e s0 + e s1 + ~n s1 + s2)
n0 = r + s2 + n e s1 + ~n s0

mux outputs (m1, m0):
m1 = s1
m0 = s0
open (o):
o = s2

Take advantage of DCs!

Next state and output logic

How do we get these:
•K-maps?
•Tools

Espresso
Synplicity

9/25/07 EECS150 fa07 23

Logic Implementation (on PLA)
e s2 s1 s0r n

n2 n1 n0 m1 m0 o

s2 s1 s0

nextstate (n2 n1 n0):
n2 = ~r (n e s1 s0 + s2)
n1 = ~r (n e s0 + e s1 + ~n s1 + s2)
n0 = r + s2 + n e s1 + ~n s0

mux outputs (m1, m0):
m1 = s1
m0 = s0

open (o):
o = s2

Next state and output logic

9/25/07 EECS150 fa07 24

Alternate logic implementations
• PALs
• Multi-level circuits

– Library of gates for implementation technology

• LUTs on FPGA
• …

9/25/07 EECS150 fa07 25

Alternate Logic Representations

Truth Table

 Boolean
Expression

 gate
representation
 (schematic)

?
?

unique

not
unique

not
unique

[convenient for
manipulation]

[close to
implementaton]

* Theorem: Any Boolean function that can be expressed as a truth table
can be written as an expression in Boolean Algebra using AND, OR,
NOT.

How do we convert from one to the other?

“To design is to represent”

9/25/07 EECS150 fa07 26

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a
function

two-level realization
(we don't count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

9/25/07 EECS150 fa07 27

Which realization is best?
• Reduce number of inputs

– literal: input variable (complemented or not)
» approximate cost of logic gate is 2 transistors per literal

– Fewer literals means less transistors - smaller circuits
– Fewer inputs implies faster gates
– Fan-ins (# of gate inputs) are limited in some technologies

• Reduce number of gates
– Fewer gates (and the packages they come in) means smaller circuits

• Reduce number of levels of gates
– Fewer level of gates implies reduced signal propagation delays

• How do we explore tradeoffs between increased circuit
delay and size?

– Automated tools to generate different solutions
– Logic minimization: reduce number of gates and complexity
– Logic optimization: reduction while trading off against delay

9/25/07 EECS150 fa07 28

Alternate Implementation: Controller
based on Shift Register
• Previous

implementation
– Comb. logic as gates (PLA)
– State bits in latches

• Alternative
– Shift reg to manipulate

state
– Simplify comb. logic

n-bit shift register

clk load shft

Dn-1 D0

in out

reset comb. logic

state

new equalclock

open

mux

9/25/07 EECS150 fa07 29

Controller using Shift Register

---------11--0

--------1-1--0

--------11---0

-------1--1--0

-------1-1---0

-------11----0

0--00000000--0

1--00010001--0

01100010010110

01100000010010

01100100010-00

01000100100110

01000000100010

01001000100-00

00101001000110

00100001000010

00110001000-00

0--1000------1

(o)(m1 m0)(n3n2n1n0)(s3s2s1s0)(e)(n)(r)

openmuxnstatestateequalnewreset

One-hot encoding scheme: state
transition is a shift right

Mux control:
C1 = 01, C2 = 10, C3 = 11 (pre-
established)

State encoding:
S1 = 1000, S2 = 0100,
S3 = 0010, OPEN = 0001, Error =
0000

Output encoding:
Closed = 0, Open = 1

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

openreset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

9/25/07 EECS150 fa07 30

Combo lock controller on shift reg

4-bit shift register:
[D3, D2, D1, D0] ← [0, 0, 0, 0]

Shift Reg Controller
clk ← clock
shft ← (~out • new)
CLR ← (~equal • new • ~out)
load ← reset
in ← 0

out → open

Mux control (read register contents):
m1 = ~s3
m0 = ~s24-bit shift register

clk CLR shft

1 0

in
out

0 0

clock

reset open

new equal

mux

~out • new

reset comb. logic

state

new equalclock

open

mux

load

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

openreset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

9/25/07 EECS150 fa07 31

How does the combo lock look on an
FPGA?
• Latches

– implement shift register (chain of 4 latches)

• LUTs
– Combinational logic for out and mux control

• Routing fabric
– Connect logical nets between CLBs

9/25/07 EECS150 fa07 32

Inside the FPGA
• Network of Combinational

logic blocks, memory and
I/O

– rich interconnect network
– special units – multipliers,

carry-logic

• CLBs
– 3 or 4-input look up table

(LUT)
– implements combinational

logic functions
– Register optionally stores

output of LUT

• Logic on FPGA
– Configure LUTs (table of

entries)
– Configure latches in CLB
– Program interconnect

4-LUT FF
1

0

latchLogic Block
set by configuration
bit-stream

4-input "look up table"

OUTPUT

INPUTS

9/25/07 EECS150 fa07 33

LUT as general logic gate
• An n-lut as a direct

implementation of a function
truth-table.

• Each latch location holds the
value of the function
corresponding to one input
combination.

0000 F(0,0,0,0)
0001 F(0,0,0,1)
0010 F(0,0,1,0)
0011 F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS
store in 1st latch
store in 2nd latch

Example: 4-lut

Example: 2-lut
ORANDINPUTS

11 1 1
10 0 1
01 0 1
00 0 0

Implements any function of 2 inputs.

How many of these are there?
How many functions of n inputs?

9/25/07 EECS150 fa07 34

User Programmability
• Latches are used to:

1. make or break cross-point
connections in the
interconnect

2. define the function of the
logic blocks

3. set user options:
» within the logic blocks
» in the input/output blocks
» global reset/clock

• “Configuration bit stream”
can be loaded under user
control:

– All latches are strung together
in a shift chain:

• Latch-based (Xilinx, Altera, …)

+ reconfigurable
– volatile
– relatively large.

latch

9/25/07 EECS150 fa07 35

4-LUT Implementation
• n-bit LUT is implemented as a

2n x 1 memory:
– inputs choose one of 2n memory

locations.
– memory locations (latches) are

normally loaded with values from
user’s configuration bit stream.

– Inputs to mux control are the CLB
inputs.

• Result is a general purpose
“logic gate”.

– n-LUT can implement any function
of n inputs!

latch

latch

latch

latch

16 x 1
mux

16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream

9/25/07 EECS150 fa07 36

Configuring CLBs

3-LUT FF
1

0

latchLogic Block set by configuration
bit-stream

3-input "look up table"

OUTPUTINPUTS

out

1
1
1
1
1
1
1
0

000
A 2 A 1 A 0

111

A 0

A 1

A 2
FF

0

1

0

inputs
out

NAND gate in FPGA CLB

out = ~(A1 A2 A3)

0
0
1
1
1
1
0
0

000
A 2 A 1 A 0

111

A 0

A 1

A 2
FF

0

1

1

inputs

Nextstate bit in FPGA CLB

nextstate = A2 xor A1

9/25/07 EECS150 fa07 37

1
1
1
1
1
1
1
0

000
A 2 A 1 A 0

111

A 0

A 1

A 2
FF

0

1

0

out = ~(A1 A2 A3)

0
0
1
1
1
1
0
0

000
A 2 A 1 A 0

111

A 0

A 1

A 2
FF

0

1

1

nextstate = A2 xor A1

Configuring Routes

in

9/25/07 EECS150 fa07 38

Sequential Systems – more examples

• Beat the combo lock example to death
– Direct FSM implementation
– Shift register

» Multiple logic representations
» gates to LUTs

• Up next
– A few quick counter examples
– Another design problem – Ant Brain

9/25/07 EECS150 fa07 39

Announcements/Reminders

• First mid term – Thursday 9/27
– No notes (… to discuss)
– Review materials are in the HW4
– Review session tonight 8-10 642-WALK (9255)
– Trying to make the exams routine

• Feel free to approach us with questions…
• No discussion Thurs, yes friday

• Lab 5 – Where’s the music?
– Normal lab lecture on Friday

9/25/07 EECS150 fa07 40

Can Any Sequential System be
Represented with a State Diagram?
• Shift Register

– Input value shown
on transition arcs

– Output values shown
within state node

100 110

111

011

101010000

001

0

1

1 1

11

1

1

0

0

0

0 0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

9/25/07 EECS150 fa07 41

In C1 C2 C3 N1 N2 N3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 1 1 1

N1 := In
N2 := C1
N3 := C2

Counter Example
• Shift Register

– Input determines next state

100 110

111

011

101010000

001

0

1

1 1

11

1

1

0

0

0

0 0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

9/25/07 EECS150 fa07 42

010

100

110

011001

000

101111

3-bit up-counter

Counters are Simple Finite State Machines

• Counters
– Proceed thru well-defined state sequence in response to enable

• Many types of counters: binary, BCD, Gray-code
– 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
– 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

module binary_upcntr (q, clk)
inputs clk;
outputs [2:0] q;
reg [2:0] q, p;

always @(q) // Next state
case (q)
3’b000: p = 3’b001;
3’b001: p = 3’b010;
…
3’b111: p = 3’b000;

endcase

always @(posedge clk) // Update state
q <= p;

endmodule

9/25/07 EECS150 fa07 43

More Complex Counter Example

• Complex Counter
– Repeats five states in sequence
– Not a binary number representation

• Step 1: Derive the state transition diagram
– Count sequence: 000, 010, 011, 101, 110

• Step 2: Derive the state transition table from the state
transition diagram

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

note the don't care conditions that arise from the unused state codes

010

000 110

101

011

9/25/07 EECS150 fa07 44

C+ := A

B+ := B' + A'C'

A+ := BC'

More Complex Counter Example
(cont’d)
• Step 3: K-maps for Next State Functions

0 0

X 1

0 X

X 1A

B

CC+

1 1

X 0

0 X

X 1A

B

CB+

0 1

X 1

0 X

X 0A

B

CA+

9/25/07 EECS150 fa07 45

Self-Starting Counters (cont’d)

• Re-deriving state transition table from don't care
assignment

0 0

1 1

0 0

1 1A

B

CC+

1 1

1 0

0 1

0 1A

B

CB+

0 1

0 1

0 0

0 0A

B

CA+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001111

100

9/25/07 EECS150 fa07 46

Self-Starting Counters

• Start-up States
– At power-up, counter may be in an unused or invalid state
– Designer must guarantee it (eventually) enters a valid state

• Self-starting Solution
– Design counter so that invalid states eventually transition to a valid

state
– May limit exploitation of don't cares

implementation
on previous slide

010

000 110

101

011

001111

100

010

000 110

101

011

001 111

100

9/25/07 EECS150 fa07 47

Final Example: Ant Brain (Ward, MIT)
• Sensors: L and R antennae, 1 if in

touching wall
• Actuators: F - forward step, TL/TR - turn

left/right slightly
• Goal: find way out of maze
• Strategy: keep the wall on the right

9/25/07 EECS150 fa07 48

A: Following wall, touching
Go forward, turning
left slightly

B: Following wall, not touching
Go forward, turning right
slightly

C: Break in wall
Go forward, turning
right slightly

D: Hit wall again
Back to state A

E: Wall in front
Turn left until...

F: ...we are here, same as
state B

G: Turn left until...
LOST: Forward until we
touch something

Ant Behavior

9/25/07 EECS150 fa07 49

Designing an Ant Brain

• State Diagram

R’C
(TR, F)

R’

L’ R’

B
(TR, F)

L’ R’

L

R

A
(TL, F)

R

L’ RL + R

E|G
(TL)

L + RLOST
(F)

L’ R’

9/25/07 EECS150 fa07 50

Synthesizing the Ant Brain Circuit
• Encode States Using a Set of State Variables

– Arbitrary choice - may affect cost, speed

• Use Transition Truth Table
– Define next state function for each state variable
– Define output function for each output

• Implement next state and output functions using
combinational logic

– 2-level logic (ROM/PLA/PAL)
– Multi-level logic
– Next state and output functions can be optimized together

9/25/07 EECS150 fa07 51

Transition Truth Table
• Using symbolic states

and outputs

LOST
(F)

E/G
(TL)

A
(TL, F)

B
(TR, F)

C
(TR, F) R’

R’

L’ R’

RL’ R’

L

R

L’ RL + R

L + R

L’ R’

state L R next state outputs
LOST 0 0 LOST F
LOST – 1 E/G F
LOST 1 – E/G F
A 0 0 B TL, F
A 0 1 A TL, F
A 1 – E/G TL, F
B – 0 C TR, F
B – 1 A TR, F
...

9/25/07 EECS150 fa07 52

state L R next state outputs
X,Y,Z X', Y', Z' F TR TL
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 1 0 0
...
0 1 0 0 0 0 1 1 1 0 1
0 1 0 0 1 0 1 0 1 0 1
0 1 0 1 0 0 0 1 1 0 1
0 1 0 1 1 0 0 1 1 0 1
0 1 1 0 0 1 0 0 1 1 0
0 1 1 0 1 0 1 0 1 1 0
...

LOST - 000
E/G - 001
A - 010
B - 011
C - 100

it now remains
to synthesize
these 6 functions

Synthesis
• 5 states : at least 3 state variables required (X, Y, Z)

– State assignment (in this case, arbitrarily chosen)

9/25/07 EECS150 fa07 53

state inputs next state outputs
X,Y,Z L R X+,Y+,Z+ F TR TL
0 0 0 0 0 0 0 0 1 0 0
0 0 0 - 1 0 0 1 1 0 0
0 0 0 1 - 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0 1
0 0 1 - 1 0 1 0 0 0 1
0 0 1 1 - 0 1 0 0 0 1
0 1 0 0 0 0 1 1 1 0 1
0 1 0 0 1 0 1 0 1 0 1
0 1 0 1 - 0 0 1 1 0 1
0 1 1 - 0 1 0 0 1 1 0
0 1 1 - 1 0 1 0 1 1 0
1 0 0 - 0 1 0 0 1 1 0
1 0 0 - 1 0 1 0 1 1 0

e.g.

TR = X + Y Z

X+ = X R’ + Y Z R’ = R’ TR

Synthesis of Next State and Output
Functions

9/25/07 EECS150 fa07 54

Circuit Implementation
• Outputs are a function of the current state only -

Moore machine

L
R

F
TR
TL

Next State

Current State

output
logic

next state
logic X+ Y+ Z+

X Y Z

9/25/07 EECS150 fa07 55

Verilog Sketch

module ant_brain (F, TR, TL, L, R)
inputs L, R;
outputs F, TR, TL;
reg X, Y, Z;

assign F = function(X, Y, Z, L, R);
assign TR = function(X, Y, Z, L, R);
assign TL = function(X, Y, Z, L, R);

always @(posedge clk)
begin

X <= function (X, Y, Z, L, R);
Y <= function (X, Y, Z, L, R);
Z <= function (X, Y, Z, L, R);

end
endmodule

9/25/07 EECS150 fa07 56
Ant is in deep trouble
if it gets in this state

Don’t Cares in FSM Synthesis
• What happens to the "unused" states (101, 110, 111)?
• Exploited as don't cares to minimize the logic

– If states can't happen, then don't care what the functions do
– if states do happen, we may be in trouble

000
(F)

001
(TL)

010
(TL, F)

011
(TR, F)

100
(TR, F) R’

R’

L’ R’

RL’ R’

L

R

L’ RL + R

L + R

L’ R’

111

101

110

9/25/07 EECS150 fa07 57

State Minimization
• Fewer states may mean fewer state variables
• High-level synthesis may generate many

redundant states
• Two state are equivalent if they are impossible to

distinguish from the outputs of the FSM, i. e., for
any input sequence the outputs are the same

• Two conditions for two states to be equivalent:
– 1) Output must be the same in both states
– 2) Must transition to equivalent states for all input

combinations

9/25/07 EECS150 fa07 58

Ant Brain Revisited
• Any equivalent states?

LOST
(F)

E/G
(TL)

A
(TL, F)

B
(TR, F)

C
(TR, F)

R’
R’

L’ R’

RL’ R’

L

R

L’ RL + R

L + R

L’ R’

9/25/07 EECS150 fa07 59

New Improved Brain
• Merge equivalent B and C states
• Behavior is exactly the same as the 5-state brain
• We now need only 2 state variables rather than 3

LOST
(F)

E/G
(TL)

A
(TL, F)

B/C
(TR, F)R’

L’ R’

RL’ R’

L

L’ RL + R

L + R

L’ R’

9/25/07 EECS150 fa07 60

state inputs next state outputs
X,Y L R X',Y' F TRTL
0 0 0 0 0 0 1 0 0
0 0 - 1 0 1 1 0 0
0 0 1 - 0 1 1 0 0
0 1 0 0 1 1 0 0 1
0 1 - 1 0 1 0 0 1
0 1 1 - 0 1 0 0 1
1 0 0 0 1 1 1 0 1
1 0 0 1 1 0 1 0 1
1 0 1 - 0 1 1 0 1
1 1 - 0 1 1 1 1 0
1 1 - 1 1 0 1 1 0

New Brain Implementation

1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1

XF

Y

R
L

0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

XTR

Y

R
L

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

XTL

Y

R
L

0 1 1 1
0 0 1 1
0 0 1 0
0 0 1 0

XX+

Y

R
L

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 1

XY+

Y

R
L

9/25/07 EECS150 fa07 61

Sequential Logic Implementation Summary

• Models for representing sequential circuits
– Abstraction of sequential elements
– Finite state machines and their state diagrams
– Inputs/outputs
– Mealy, Moore, and synchronous Mealy machines

• Finite state machine design procedure
– Deriving state diagram
– Deriving state transition table
– Determining next state and output functions
– Implementing combinational logic

9/25/07 EECS150 fa07 62

system

data-path control

state
registers

combinational
logicmultiplexer comparatorcode

registers

register logic

switching
networks

Design hierarchy

9/25/07 EECS150 fa07 63

Good luck on the Midterm…

9/25/07 EECS150 fa07 64

Final Word: Blocking Vs Non-Blocking

• Two types of procedural assignments
– Blocking
– Non-Blocking

• Why do we need them
– Express parallelism (not straight line C)

• Synchronous system
– All flip-flops clock data simultaneously
– How do we express parallelism in this operation?

9/25/07 EECS150 fa07 65

A Simple Shift Register
reg a, b, c;
always @(posedge clock)
begin

a = 1;
b = a;
c = b;

end
Probably not what you want!

reg a, b, c;
always @(posedge clock)

a <= 1;
always @(posedge clock)

b <= a;
always @(posedge clock)

c <= b;

reg a, b, c;
always @(posedge clock)
begin

a <= 1;
b <= a;
c <= b;

end

reg a, b, c;
always @(posedge clock)

a = 1;
always @(posedge clock)

b = a;
always @(posedge clock)

c = b;
What order does this run?

This works This works too…
9/25/07 EECS150 fa07 66

The Circuit

Non-Blocking: RHS computed at beginning of execution instance.
LHS updated after all events in current instance computed.

reg a, b, c;
always @(posedge clock)
begin

a = 1;
b = a;
c = b;

end

reg a, b, c;
always @(posedge clock)
begin

a <= 1;
b <= a;
c <= b;

end

1 a b c

1 a b c

