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Outline
• Top-to-bottom

– What have we covered so far?

• Combo Lock example 
– FSM to logic
– Mapping to FPGAs

• Announcements
• Counters revisited
• Another example – Ant Brain
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Digital design - as we’ve seen it

System specification (in words)

Datapath specification Controller specification

Comb. logic operations

Verilog dataflow

Gates / LUTs

FSM generation

STT / STD / Encoding

Logic: nextstate/outputs

Verilog behavior

Gates / LUTs / FF

ARTART

Lec 5,6,7: FSM 

Lec 6-7: Modeling FSMs

Lec 3,8: Logic min.

Lec 4: HDL, Labs

Lec 2, 3: CMOS, FPGA

Lec 3,8: Logic

Lec 4: HDLs, Labs

Lec 2, 3: CMOS, FPGA
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Where are we now?
• (Synchronous) Sequential systems

• Given datapath and control specifications
– Generate comb. logic for datapath

» Minimize logic for efficient implementation
– Generate FSM for controller

» Choose implementation, encoding
» Generate logic for nextstate and output

– Describe datapath and controller in Verilog
» structure, dataflow and behavior
» Map onto gates or LUTs

• Seems like a good point to “test” your 
understanding!
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scope of CS 150

Representation of digital designs

• Physical devices (transistors,  relays)
• Switches
• Truth tables
• Boolean algebra
• Gates
• Waveforms
• Finite state behavior
• Register-transfer behavior
• Concurrent abstract specifications

more depth than 61C

focus on building systems
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X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' Y' X • Y X' • Y' ( X • Y ) + ( X' • Y' )
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

( X • Y ) + ( X' • Y' )  ≡ X = Y

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is 
true when the variables X 
and Y have the same value
and false, otherwise

Logic Functions and Boolean Algebra
• Any logic function that can be expressed as a 

truth table can be written as an expression in 
Boolean algebra using the operators: ', +, and •
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time

change in Y takes time to "propagate" through gates

Waveform View of Logic Functions
• Just a sideways truth table

– But note how edges don't line up exactly
– It takes time for a gate to switch its output!
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An algebraic structure

• An algebraic structure consists of
– a set of elements B
– binary operations { + , • }
– and a unary operation { ' }
– such that the following axioms hold:

1. set B contains at least two elements, a, b, such that a ≠ b
2. closure: a + b   is in B a • b   is in B
3. commutativity:   a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c)   a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a' = 1 a • a' = 0
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there is a timing "window" 
around the clocking event 
during which the input must 
remain stable and unchanged 
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing Methodologies (cont’d)
• Definition of terms

– clock: periodic event, causes state of storage element to 
change; can be rising or falling edge, or high or low level

– setup time: minimum time before the clocking event by which 
the input must be stable (Tsu)

– hold time: minimum time after the clocking event until which 
the input must remain stable (Th)
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Axioms & theorems of Boolean algebra
• Identity

1.   X + 0 = X 1D.   X • 1 = X

• Null
2.   X + 1 = 1 2D.   X • 0 = 0

• Idempotency:
3.   X + X = X 3D.   X • X = X

• Involution:
4.   (X')' = X

• Complementarity:
5.   X + X' = 1 5D.   X • X' = 0

• Commutativity:
6.   X + Y = Y + X 6D.   X • Y = Y • X

• Associativity:
7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)
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Axioms and theorems of Boolean algebra 
(cont’d)
• Distributivity:

8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)
• Uniting:

9.   X • Y + X • Y' = X 9D.   (X + Y) • (X + Y') = X
• Absorption:

10. X + X • Y = X 10D.  X • (X + Y) = X
11. (X + Y') • Y = X • Y 11D.  (X • Y') + Y = X + Y

• Factoring:
12. (X + Y) • (X' + Z) = 12D. X • Y + X' • Z = 

X • Z + X' • Y (X + Z) • (X' + Y)
• Concensus:

13. (X • Y) + (Y • Z) + (X' • Z) =  13D. (X + Y) • (Y + Z) • (X' + Z) =
X • Y + X' • Z (X + Y) • (X' + Z)
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Axioms and theorems of Boolean algebra 
(cont’)

• de Morgan's:
14. (X + Y + ...)' = X' • Y' • ... 14D. (X • Y • ...)' = X' + Y' + ...

• generalized de Morgan's:
15. f'(X1,X2,...,Xn,0,1,+,•) =  f(X1',X2',...,Xn',1,0,•,+)

• establishes relationship between • and +
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Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk
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Sequential Logic Implementation
• Models for representing sequential circuits

– Finite-state machines (Moore and Mealy)
– Representation of memory (states)
– Changes in state (transitions)

• Design procedure
– State diagrams
– Implementation choice: counters, shift registers, FSM
– State transition table
– State encoding
– Combinational logic

» Next state functions
» Output functions
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Abstraction of State Elements

• Divide circuit into combinational logic and state
• Localize feedback loops and make it easy to break cycles
• Implementation of storage elements leads to various 

forms of sequential logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs
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Forms of Sequential Logic
• Asynchronous sequential logic – state changes 

occur whenever state inputs change (elements 
may be simple wires or delay elements)

• Synchronous sequential logic – state changes 
occur in lock step across all storage elements 
(using a periodic waveform - the clock)

Clock
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• States: determined by possible values in 
sequential storage elements

• Transitions: change of state
• Clock: controls when state can change by 

controlling storage elements

• Sequential Logic
– Sequences through a series of states
– Based on sequence of values on input signals
– Clock period defines elements of sequence

In = 0

In = 1

In = 0In = 1

100

010

110

111001

FSM Representations
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Example: FSM Design – Combo lock
• Combination lock

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control clock

datapath Controller
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reset

open/closed

new equal

controller
mux
control

clock

reset

open/closed

new equal

mux
control

clock

comb. logic

state

special circuit element, 
called a register, for 
remembering inputs
when told to by clock

Combo lock - controller 
implementation
• Implementation of the controller
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Combo Lock - State Encoding
reset new equal state nstate mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – closed 
0 – – OPEN OPEN – open
0 – – ERR ERR – closed

Symbolic states 
and outputs

Mux control: 
C1 = 01, C2 = 10, C3 = 11 (pre-
established)

State encoding: 
S1 = 001, S2 = 010, S3 = 011, 
OPEN = 111, Error = 000

Output encoding: 
Closed = 0, Open = 1

One possible encoding

reset

011

out=0

out=0
mux=01 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

001 010 111

000

out=0
mux=10 equal

& new

out=0
mux=11 equal

& new

out=1

Concrete encoding
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FSM implementation
• Steps for the hardware designer:

– Word specification
– FSM design
– Encoding
– Verification!

• At this point, hand over to synthesis tools:
– Describe FSM behavior in Verilog
– Synthesize controller 

• Good encoding
– Better performance
– Fewer state bits
– Possibility of state minimization
– Tools also try to figure this out

For this example, go through the logic synthesis steps 
(ideally, tools take care of all this)… 9/25/07 EECS150 fa07 22

Example: Combo Lock

------110--0
------101--0
------100--0
0--000000--0
1--111111--0
011111011110
011000011010
011011011-00
010011010110
010000010010
010010010-00
001010001110
001000001010
001001001-00
0--001-----1
(o)(m1 m0)(n2 n1 n0)(s2 s1 s0)(e)(n)(r)
openmuxnstatestateequalnewreset

nextstate (n2 n1 n0): 
n2 = ~r (n e s1 s0 + s2)
n1 = ~r (n e s0 + e s1 + ~n s1 + s2)
n0 = r + s2 + n e s1 + ~n s0 

mux outputs (m1, m0):
m1 = s1 
m0 = s0 
open (o):
o = s2

Take advantage of DCs!

Next state and output logic

How do we get these:
•K-maps?
•Tools

Espresso
Synplicity
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Logic Implementation (on PLA)
e s2 s1 s0r n

n2 n1 n0 m1 m0 o

s2 s1 s0

nextstate (n2 n1 n0): 
n2 = ~r (n e s1 s0 + s2)
n1 = ~r (n e s0 + e s1 + ~n s1 + s2)
n0 = r + s2 + n e s1 + ~n s0 

mux outputs (m1, m0):
m1 = s1 
m0 = s0 

open (o):
o = s2

Next state and output logic
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Alternate logic implementations
• PALs
• Multi-level circuits

– Library of gates for implementation technology

• LUTs on FPGA
• …
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Alternate Logic Representations

Truth Table

 Boolean
Expression

 gate
representation
 (schematic)

?
?

unique

not
unique

not
unique

[convenient for 
manipulation]

[close to
implementaton]

* Theorem: Any Boolean function that can be expressed as a truth table 
can be written as an expression in Boolean Algebra using AND, OR, 
NOT.

How do we convert from one to the other?

“To design is to represent”
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A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a 
function

two-level realization
(we don't count NOT gates)

XOR gate (easier to draw 
but costlier to build)

multi-level realization
(gates with fewer inputs)
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Which realization is best?
• Reduce number of inputs

– literal: input variable (complemented or not)
» approximate cost of logic gate is 2 transistors per literal

– Fewer literals means less transistors - smaller circuits
– Fewer inputs implies faster gates
– Fan-ins (# of gate inputs) are limited in some technologies

• Reduce number of gates
– Fewer gates (and the packages they come in) means smaller circuits

• Reduce number of levels of gates
– Fewer level of gates implies reduced signal propagation delays

• How do we explore tradeoffs between increased circuit 
delay and size?

– Automated tools to generate different solutions
– Logic minimization: reduce number of gates and complexity
– Logic optimization: reduction while trading off against delay
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Alternate Implementation: Controller 
based on Shift Register
• Previous 

implementation
– Comb. logic as gates (PLA)
– State bits in latches

• Alternative
– Shift reg to manipulate 

state
– Simplify comb. logic

n-bit shift register
***

clk load shft

Dn-1 D0

in out

reset comb. logic

state

new equalclock

open

mux
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Controller using Shift Register

---------11--0

--------1-1--0

--------11---0

-------1--1--0

-------1-1---0

-------11----0

0--00000000--0

1--00010001--0

01100010010110

01100000010010

01100100010-00

01000100100110

01000000100010

01001000100-00

00101001000110

00100001000010

00110001000-00

0--1000------1

(o)(m1 m0)(n3n2n1n0)(s3s2s1s0)(e)(n)(r)

openmuxnstatestateequalnewreset

One-hot encoding scheme: state 
transition is a shift right

Mux control: 
C1 = 01, C2 = 10, C3 = 11 (pre-
established)

State encoding: 
S1 = 1000, S2 = 0100, 
S3 = 0010, OPEN = 0001, Error = 
0000

Output encoding: 
Closed = 0, Open = 1

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

openreset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open
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Combo lock controller on shift reg

4-bit shift register: 
[D3, D2, D1, D0] ← [0, 0, 0, 0]

Shift Reg Controller
clk ← clock
shft ← (~out • new)
CLR ← (~equal • new • ~out )
load ← reset
in ← 0

out → open

Mux control (read register contents):
m1 = ~s3
m0 = ~s24-bit shift register

clk CLR shft

1 0

in
out

0 0

clock

reset open

new equal

mux

~out • new

reset comb. logic

state

new equalclock

open

mux

load

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

openreset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open
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How does the combo lock look on an 
FPGA?  
• Latches

– implement shift register (chain of 4 latches)

• LUTs
– Combinational logic for out and mux control

• Routing fabric
– Connect logical nets between CLBs
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Inside the FPGA
• Network of Combinational 

logic blocks, memory and 
I/O

– rich interconnect network
– special units – multipliers, 

carry-logic

• CLBs
– 3 or 4-input look up table 

(LUT)
– implements combinational 

logic functions
– Register optionally stores 

output of LUT

• Logic on FPGA
– Configure LUTs (table of 

entries)
– Configure latches in CLB
– Program interconnect

4-LUT FF
1

0

latchLogic Block
set by configuration 
bit-stream

4-input "look up table"

OUTPUT

INPUTS
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LUT as general logic gate
• An n-lut as a direct 

implementation of a function 
truth-table.

• Each latch location holds the 
value of the function 
corresponding to one input 
combination.

0000    F(0,0,0,0)
0001    F(0,0,0,1)
0010    F(0,0,1,0)
0011    F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS
store in 1st latch
store in 2nd latch

Example: 4-lut

Example: 2-lut
ORANDINPUTS

11     1     1
10     0     1
01     0     1
00     0     0

Implements any function of 2 inputs.  

How many of these  are there?
How many functions of n inputs?

9/25/07 EECS150 fa07 34

User Programmability
• Latches are used to:

1. make or break cross-point 
connections in the 
interconnect

2. define the function of the 
logic blocks

3. set user options:
» within the logic blocks
» in the input/output blocks
» global reset/clock

• “Configuration bit stream”
can be loaded under user 
control:

– All latches are strung together 
in a shift chain:

• Latch-based (Xilinx, Altera, …)

+ reconfigurable
– volatile
– relatively large.

latch
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4-LUT Implementation
• n-bit LUT is implemented as a 

2n x 1 memory:
– inputs choose one of 2n memory 

locations.
– memory locations (latches) are 

normally loaded with values from 
user’s configuration bit stream.

– Inputs to mux control are the CLB 
inputs.

• Result is a general purpose 
“logic gate”.  

– n-LUT can implement any function 
of n inputs!

latch

latch

latch

latch

16 x 1
mux

16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream
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Configuring CLBs

3-LUT FF
1

0

latchLogic Block set by configuration 
bit-stream

3-input "look up table"

OUTPUTINPUTS

out

1
1
1
1
1
1
1
0

000
A 2 A 1 A 0

111

A 0

A 1

A 2
FF

0

1

0

inputs
out

NAND gate in FPGA CLB

out = ~(A1 A2 A3)

0
0
1
1
1
1
0
0

000
A 2 A 1 A 0

111

A 0

A 1

A 2
FF

0

1

1

inputs

Nextstate bit in FPGA CLB

nextstate = A2 xor A1
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1
1
1
1
1
1
1
0

000
A 2 A 1 A 0

111

A 0

A 1

A 2
FF

0

1

0

out = ~(A1 A2 A3)

0
0
1
1
1
1
0
0

000
A 2 A 1 A 0

111

A 0

A 1

A 2
FF

0

1

1

nextstate = A2 xor A1

Configuring Routes

in
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Sequential Systems – more examples

• Beat the combo lock example to death
– Direct FSM implementation
– Shift register

» Multiple logic representations
» gates to LUTs

• Up next
– A few quick counter examples
– Another design problem – Ant Brain
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Announcements/Reminders

• First mid term – Thursday 9/27
– No notes (… to discuss)
– Review materials are in the HW4
– Review session tonight 8-10             642-WALK (9255) 
– Trying to make the exams routine

• Feel free to approach us with questions…
• No discussion Thurs, yes friday

• Lab 5 – Where’s the music?
– Normal lab lecture on Friday
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Can Any Sequential System be 
Represented with a State Diagram?
• Shift Register

– Input value shown
on transition arcs

– Output values shown
within state node

100 110

111

011

101010000

001

0

1

1 1

11

1

1

0

0

0

0 0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK
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In C1 C2 C3 N1 N2 N3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 1 1 1

N1 := In
N2 := C1
N3 := C2

Counter Example
• Shift Register

– Input determines next state

100 110

111

011

101010000

001

0

1

1 1

11

1

1

0

0

0

0 0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK
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010

100

110

011001

000

101111

3-bit up-counter

Counters are Simple Finite State Machines

• Counters
– Proceed thru well-defined state sequence in response to enable

• Many types of counters: binary, BCD, Gray-code
– 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
– 3-bit down-counter:  111, 110, 101, 100, 011, 010, 001, 000, 111, ...

module binary_upcntr (q, clk)
inputs     clk;
outputs    [2:0] q;
reg [2:0] q, p;

always @(q) // Next state
case (q)
3’b000: p = 3’b001;
3’b001: p = 3’b010;
…
3’b111: p = 3’b000;

endcase

always @(posedge clk) // Update state
q <= p;

endmodule
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More Complex Counter Example

• Complex Counter
– Repeats five states in sequence
– Not a binary number representation

• Step 1: Derive the state transition diagram
– Count sequence: 000, 010, 011, 101, 110

• Step 2: Derive the state transition table from the state 
transition diagram

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

note the don't care conditions that arise from the unused state codes

010

000 110

101

011
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C+ := A

B+ := B' + A'C'

A+ := BC'

More Complex Counter Example 
(cont’d)
• Step 3: K-maps for Next State Functions

0 0

X 1

0 X

X 1A

B

CC+

1 1

X 0

0 X

X 1A

B

CB+

0 1

X 1

0 X

X 0A

B

CA+
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Self-Starting Counters (cont’d)

• Re-deriving state transition table from don't care 
assignment

0 0

1 1

0 0

1 1A

B

CC+

1 1

1 0

0 1

0 1A

B

CB+

0 1

0 1

0 0

0 0A

B

CA+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001111

100
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Self-Starting Counters

• Start-up States
– At power-up, counter may be in an unused or invalid state
– Designer must guarantee it (eventually) enters a valid state

• Self-starting Solution
– Design counter so that invalid states eventually transition to a valid 

state
– May limit exploitation of don't cares

implementation
on previous slide

010

000 110

101

011

001111

100

010

000 110

101

011

001 111

100
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Final Example: Ant Brain (Ward, MIT)
• Sensors: L and R antennae, 1 if in 

touching wall
• Actuators: F - forward step, TL/TR - turn 

left/right slightly
• Goal: find way out of maze
• Strategy: keep the wall on the right
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A: Following wall, touching    
Go forward, turning 
left slightly

B: Following wall, not touching 
Go forward, turning right 
slightly

C: Break in wall    
Go forward, turning 
right slightly

D: Hit wall again    
Back to state A

E: Wall in front    
Turn left until...

F: ...we are here, same as 
state B

G: Turn left until...
LOST: Forward until we 
touch something

Ant Behavior
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Designing an Ant Brain

• State Diagram

R’C
(TR, F)

R’

L’ R’

B
(TR, F)

L’ R’

L

R

A
(TL, F)

R

L’ RL + R

E|G
(TL)

L + RLOST
(F)

L’ R’

9/25/07 EECS150 fa07 50

Synthesizing the Ant Brain Circuit
• Encode States Using a Set of State Variables

– Arbitrary choice - may affect cost, speed

• Use Transition Truth Table
– Define next state function for each state variable
– Define output function for each output

• Implement next state and output functions using 
combinational logic

– 2-level logic (ROM/PLA/PAL)
– Multi-level logic
– Next state and output functions can be optimized together
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Transition Truth Table
• Using symbolic states

and outputs

LOST
(F)

E/G
(TL)

A
(TL, F)

B
(TR, F)

C
(TR, F) R’

R’

L’ R’

RL’ R’

L

R

L’ RL + R

L + R

L’ R’

state L R next state outputs
LOST 0 0 LOST F
LOST – 1 E/G F
LOST 1 – E/G F
A 0 0 B TL, F
A 0 1 A TL, F
A 1 – E/G TL, F
B – 0 C TR, F
B – 1 A TR, F
... ... ... ... ...
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state L R next state outputs
X,Y,Z X', Y', Z' F TR TL
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 1 0 0
... ... ... ... ...
0 1 0 0 0 0 1 1 1 0 1
0 1 0 0 1 0 1 0 1 0 1
0 1 0 1 0 0 0 1 1 0 1
0 1 0 1 1 0 0 1 1 0 1
0 1 1 0 0 1 0 0 1 1 0
0 1 1 0 1 0 1 0 1 1 0
... ... ... ... ...

LOST - 000
E/G - 001
A - 010
B - 011
C - 100

it now remains
to synthesize
these 6 functions

Synthesis
• 5 states : at least 3 state variables required (X, Y, Z)

– State assignment (in this case, arbitrarily chosen)
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state inputs next state outputs
X,Y,Z L  R X+,Y+,Z+ F TR TL
0 0 0 0 0 0 0 0 1 0 0
0 0 0 - 1 0 0 1 1 0 0
0 0 0 1 - 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0 1
0 0 1 - 1 0 1 0 0 0 1
0 0 1 1 - 0 1 0 0 0 1
0 1 0 0 0 0 1 1 1 0 1
0 1 0 0 1 0 1 0 1 0 1
0 1 0 1 - 0 0 1 1 0 1
0 1 1 - 0 1 0 0 1 1 0
0 1 1 - 1 0 1 0 1 1 0
1 0 0 - 0 1 0 0 1 1 0
1 0 0 - 1 0 1 0 1 1 0

e.g. 

TR = X + Y Z

X+ = X R’ + Y Z R’ = R’ TR

Synthesis of Next State and Output 
Functions
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Circuit Implementation
• Outputs are a function of the current state only -

Moore machine

L
R

F
TR
TL

Next State

Current State

output
logic

next state
logic X+ Y+ Z+

X Y Z
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Verilog Sketch

module ant_brain (F, TR, TL, L, R)
inputs     L, R;
outputs    F, TR, TL;
reg X, Y, Z;

assign F  = function(X, Y, Z, L, R);
assign TR = function(X, Y, Z, L, R);
assign TL = function(X, Y, Z, L, R);

always @(posedge clk)
begin

X <= function (X, Y, Z, L, R);
Y <= function (X, Y, Z, L, R);
Z <= function (X, Y, Z, L, R);

end
endmodule
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Ant is in deep trouble 
if it gets in this state

Don’t Cares in FSM Synthesis
• What happens to the "unused" states (101, 110, 111)?
• Exploited as don't cares to minimize the logic

– If states can't happen, then don't care what the functions do
– if states do happen, we may be in trouble

000
(F)

001
(TL)

010
(TL, F)

011
(TR, F)

100
(TR, F) R’

R’

L’ R’

RL’ R’

L

R

L’ RL + R

L + R

L’ R’

111

101

110
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State Minimization
• Fewer states may mean fewer state variables
• High-level synthesis may generate many 

redundant states
• Two state are equivalent if they are impossible to 

distinguish from the outputs of the FSM, i. e., for 
any input sequence the outputs are the same

• Two conditions for two states to be equivalent:
– 1) Output must be the same in both states
– 2) Must transition to equivalent states for all input 

combinations
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Ant Brain Revisited
• Any equivalent states?

LOST
(F)

E/G
(TL)

A
(TL, F)

B
(TR, F)

C
(TR, F)

R’
R’

L’ R’

RL’ R’

L

R

L’ RL + R

L + R

L’ R’
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New Improved Brain
• Merge equivalent B and C states
• Behavior is exactly the same as the 5-state brain
• We now need only 2 state variables rather than 3

LOST
(F)

E/G
(TL)

A
(TL, F)

B/C
(TR, F)R’

L’ R’

RL’ R’

L

L’ RL + R

L + R

L’ R’
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state inputs    next state outputs
X,Y L  R X',Y' F TRTL
0 0 0 0 0 0 1 0 0
0 0 - 1 0 1 1 0 0
0 0 1 - 0 1 1 0 0
0 1 0 0 1 1 0 0 1
0 1 - 1 0 1 0 0 1
0 1 1 - 0 1 0 0 1
1 0 0 0 1 1 1 0 1
1 0 0 1 1 0 1 0 1
1 0 1 - 0 1 1 0 1
1 1 - 0 1 1 1 1 0
1 1 - 1 1 0 1 1 0

New Brain Implementation

1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1

XF

Y

R
L

0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

XTR

Y

R
L

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

XTL

Y

R
L

0 1 1 1
0 0 1 1
0 0 1 0
0 0 1 0

XX+

Y

R
L

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 1

XY+

Y

R
L
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Sequential Logic Implementation Summary

• Models for representing sequential circuits
– Abstraction of sequential elements
– Finite state machines and their state diagrams
– Inputs/outputs
– Mealy, Moore, and synchronous Mealy machines

• Finite state machine design procedure
– Deriving state diagram
– Deriving state transition table
– Determining next state and output functions
– Implementing combinational logic
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system

data-path control

state
registers

combinational
logicmultiplexer comparatorcode

registers

register logic

switching
networks

Design hierarchy
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Good luck on the Midterm…
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Final Word: Blocking Vs Non-Blocking

• Two types of procedural assignments
– Blocking
– Non-Blocking

• Why do we need them
– Express parallelism (not straight line C)

• Synchronous system
– All flip-flops clock data simultaneously
– How do we express parallelism in this operation?
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A Simple Shift Register
reg a, b, c;
always @(posedge clock) 
begin

a = 1;
b = a;
c = b;

end
Probably not what you want!

reg a, b, c;
always @(posedge clock) 

a <= 1;
always @(posedge clock)

b <= a;
always @(posedge clock)

c <= b;

reg a, b, c;
always @(posedge clock) 
begin

a <= 1;
b <= a;
c <= b;

end

reg a, b, c;
always @(posedge clock) 

a = 1;
always @(posedge clock)

b = a;
always @(posedge clock)

c = b;
What order does this run?

This works This works too…
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The Circuit

Non-Blocking: RHS computed at beginning of execution instance.  
LHS updated after all events in current instance computed.

reg a, b, c;
always @(posedge clock) 
begin

a = 1;
b = a;
c = b;

end

reg a, b, c;
always @(posedge clock) 
begin

a <= 1;
b <= a;
c <= b;

end

1 a b c

1 a b c


