
EECS 150 - Components and Design
Techniques for Digital Systems

Lec 8 – Timing Intro, KMAP, Synthesis

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 2

Outline
• Timing Methodology for Synchronous Circuits
• Boolean Logic minimization (Kmaps)
• Synthesis – what else the tools do [to the extent

time permits]

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 3

Review: Fundamental Design Principle

• Divide circuit into combinational logic and state
• Localize feedback loops and make it easy to break

cycles
• Implementation of storage elements leads to various

forms of sequential logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 4

Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 5

Timing Methodology
• Rules for interconnecting components and clocks

– Guarantee proper operation of system when strictly followed

• Approach depends on building blocks used for storage elements
– Focus on systems with edge-triggered flip-flops

» Found in programmable logic devices
– Many custom integrated circuits focus on level-sensitive latches

• Basic rules for correct timing:
– (1) Correct inputs, with respect to time, are provided to the flip-flops

» Everything is stable when the clock ticks
– (2) No flip-flop changes state more than once per clocking event

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 6

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing Methodologies (cont’d)
• Definition of terms

– clock: periodic event, causes state of storage element to
change; can be rising or falling edge, or high or low level

– setup time: minimum time before the clocking event by which
the input must be stable (Tsu)

– hold time: minimum time after the clocking event until which
the input must remain stable (Th)

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 7

behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of Latches and Flip-
Flops

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 8

all measurements are made from the clocking event, i.e.
the rising edge of the clock

Typical Timing Specifications

• Positive edge-triggered D flip-flop
– Setup and hold times
– Minimum clock width
– Propagation delays (low to high, high to low, max and typical)

Th
5ns

Tw 25ns

Tplh
25ns
13ns

Tphl
40ns
25ns

Tsu
20ns

D

CLK

Q

Tsu
20ns

Th
5ns

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 9

IN

Q0

Q1

CLK

100

Cascading Edge-triggered Flip-Flops
• Shift register

– New value goes into first stage
– While previous value of first stage goes into second stage
– Consider setup/hold/propagation delays (prop must be > hold)

CLK

IN
Q0 Q1

D Q D Q OUT

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 10

timing constraints
guarantee proper

operation of
cascaded components

assumes uniform
distribution of the clock

Cascading Edge-triggered Flip-Flops
• Why this works

– Propagation delays exceed hold times
– Clock width constraint exceeds setup time
– This guarantees following stage will latch current value before

it changes to new value

Tsu
4ns

Tp
3ns

Th
2ns

In

Q0

Q1

CLK

Tsu
4ns

Tp
3ns

Th
2ns

Tp + Tsu < Tclk

Tp > Th

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 11

IN

Q0

Q1

CLK

100

Cascading Edge-triggered Flip-Flops
• Shift register

– New value goes into first stage
– While previous value of first stage goes into second stage
– Consider setup/hold/propagation delays (prop must be > hold)

CLK

IN
Q0 Q1

D Q D Q OUT

Delay
Clk1

Clk1

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 12

original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

CLK1 is a delayed
version of CLK0

In
Q0
Q1

CLK0
CLK1

100

Clock Skew
• The problem

– Correct behavior assumes next state of all storage elements
determined by all storage elements at the same time

– Difficult in high-performance systems because time for clock
to arrive at flip-flop is comparable to delays through logic (and
will soon become greater than logic delay)

– Effect of skew on cascaded flip-flops:

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 13

timing constraints
guarantee proper

operation of
cascaded components

assumes uniform
distribution of the clock

Cascading Edge-triggered Flip-Flops
• Why this works (redux)

– Propagation delays exceed hold times
– Clock width constraint exceeds setup time
– This guarantees following stage will latch current value before

it changes to new value

Tsu
4ns

Tp
3ns

Th
2ns

In

Q0

Q1

CLK

Tsu
4ns

Tp
3ns

Th
2ns

Tp + Tsu + Tskew < Tclk

Tp - Tskew > Th

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 14

Type When inputs are sampledWhen output is valid
unclocked always propagation delay from input change
latch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)

edge of clock)
master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock

edge of clock)
negative clock hi-to-lo transition propagation delay from falling edge
edge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

Comparison of Latches and Flip-Flops

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 15

Summary of Latches and Flip-Flops

• Development of D-FF
– Level-sensitive used in custom integrated circuits

» can be made with 4 switches
– Edge-triggered used in programmable logic devices
– Good choice for data storage register

• Historically J-K FF was popular but now never used
– Similar to R-S but with 1-1 being used to toggle output (complement state)
– Good in days of TTL/SSI (more complex input function:

D = JQ' + K'Q
– Not a good choice for PLAs as it requires two inputs
– Can always be implemented using D-FF

• Preset and clear inputs are highly desirable on flip-flops
– Used at start-up or to reset system to a known state

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 16

Logic Minimization
• One piece of synthesis

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 17

Quick Review: Canonical Forms
• Standard form for a Boolean expression - unique algebraic

expression directly from a true table (TT) description.
• Two Types:

* Sum of Products (SOP)
* Product of Sums (POS)

• Sum of Products (disjunctive normal form, minterm expansion).
Example:

minterms a b c f f’
a’b’c’ 0 0 0 0 1
a’b’c 0 0 1 0 1
a’bc’ 0 1 0 0 1
a’bc 0 1 1 1 0
ab’c’ 1 0 0 1 0
ab’c 1 0 1 1 0
abc’ 1 1 0 1 0
abc 1 1 1 1 0

One product (and) term for each 1 in f:
f = a’bc + ab’c’ + ab’c +abc’ +abc
f’ = a’b’c’ + a’b’c + a’bc’

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 18

Quick Review: Sum of Products (cont.)

Canonical Forms are usually not minimal:
Our Example:

f = a’bc + ab’c’ + ab’c + abc’ +abc (xy’ + xy = x)
= a’bc + ab’ + ab
= a’bc + a (x’y + x = y + x)
= a + bc

f’ = a’b’c’ + a’b’c + a’bc’
= a’b’ + a’bc’
= a’ (b’ + bc’)
= a’ (b’ + c’)
= a’b’ + a’c’

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 19

Quick Review: Canonical Forms
• Product of Sums (conjunctive normal form, maxterm expansion).

Example:
maxterms a b c f f’
a+b+c 0 0 0 0 1
a+b+c’ 0 0 1 0 1
a+b’+c 0 1 0 0 1
a+b’+c’ 0 1 1 1 0
a’+b+c 1 0 0 1 0
a’+b+c’ 1 0 1 1 0
a’+b’+c 1 1 0 1 0
a’+b’+c’ 1 1 1 1 0

Mapping from SOP to POS (or POS to SOP): Derive truth table then
proceed.

One sum (or) term for each 0 in f:
f = (a+b+c)(a+b+c’)(a+b’+c)
f’ = (a+b’+c’)(a’+b+c)(a’+b+c’)

(a’+b’+c)(a+b+c’)

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 20

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
– "don't care" about associated
output values, can be exploited
in minimization

Incompletely specified functions

• Example: binary coded decimal increment by 1
– BCD digits encode decimal digits 0 – 9 in bit patterns 0000 – 1001

don't care (DC) set of W

on-set of W

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 21

Implementing the TT
• Circuit must “cover the 1s” and “none of the 0s”.
• Don’t care can go either way

A B | f

0 0 | 0

0 1 | 1

1 0 | 1

1 1 | 1

A B | f

0 0 | 0

0 1 | 1

1 1 | 1

1 0 | 1

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 22

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A'B'+AB' = (A'+A)B' = B'

The Uniting Theorem
• Key tool to simplification: A (B' + B) = A
• Essence of simplification of two-level logic

– Find two element subsets of the ON-set where only one
variable changes its value – this single varying variable can
be eliminated and a single product term used to represent
both elements

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 23

1-cube
X

0 1

Boolean cubes
• Visual technique for identifying when the uniting

theorem can be applied
• n input variables = n-dimensional "cube“
• Neighbors “address” differs by one bit flip

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 24

A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes)
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean
cubes
• Uniting theorem combines two "faces" of a cube

into a larger "face"
• Example:

A

B

11

00

01

10

F

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 25

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Cout = BCin+AB+ACin

A(B+B')Cin

the on-set is completely covered by
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Three variable example
• Binary full-adder carry-out logic

A

B C

000

111

101

(A'+A)BCin

AB(Cin'+Cin)

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 26

F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2
represents an expression in one variable
i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes
• Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001
010

011
110

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 27

m-dimensional cubes in a n-
dimensional Boolean space
• In a 3-cube (three variables):

– 0-cube, i.e., a single node, yields a term in 3 literals
– 1-cube, i.e., a line of two nodes, yields a term in 2 literals
– 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
– 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

• In general,
– m-subcube within an n-cube (m < n) yields a term with n – m

literals

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 28

Announcements
• Typo corrected on HW3, prob. 1
• P3, yes there is an input to each controller

described in the text that is not shown in the
picture.

• HW4 out tonight – it is a mid term review
• Review session Tues
• Mid term next Thurs in 125 Cory

– Everything you want to know at hkn/student/online/cs/150 …

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 29

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Karnaugh maps
• Flat map of Boolean cube

– Wrap–around at edges
– Hard to draw and visualize for more than 4 dimensions
– Virtually impossible for more than 6 dimensions

• Alternative to truth-tables to help visualize
adjacencies
– Guide to applying the uniting theorem
– On-set elements with only one variable changing value are

adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 30

Karnaugh maps (cont’d)
• Numbering scheme based on Gray–code

– e.g., 00, 01, 11, 10
– 2n values of n bits where each differs from next by one bit flip

» Hamiltonian circuit through n-cube
– Only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 31

Adjacencies in Karnaugh maps
• Wrap from first to last column
• Wrap top row to bottom row

000 010

001 011

110 100

111 101C
B

A

A

B C

000

111

101

100

001
010

011
110

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 32

obtain the
complement
of the function
by covering 0s
with subcubes

Karnaugh map examples
• F =

• Cout =

• f(A,B,C) = Σm(0,4,6,7)

0 0

0 1

1 0

1 1Cin
B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C
B

A

B’

AB

AC

+ ACin+ BCin

+ B’C’ + AB’

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 33

F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) =

More Karnaugh map examples

0 0

0 0

1 1

1 1C
B

A

1 0

0 0

0 1

1 1C
B

A

0 1

1 1

1 0

0 0C
B

A

A

= AC + B’C’

= BC’ + A’C

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 34

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

K-map: 4-variable interactive quiz

• F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)
F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 35

C + B’D’

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

• F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)
F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 36

+ B’C’D

Karnaugh maps: don’t cares
• f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)

– without don't cares
» f =

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A’D

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 37

Karnaugh maps: don’t cares (cont’d)
• f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)

– f = A'D + B'C'D without don't cares
– f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A'D

by using don't care as a "1"
a 2-cube can be formed
rather than a 1-cube to cover
this node

+ C'D

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 38

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B
C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 39

A' B' D + A' C + B' C D

B C' D' + A C' + A B D'

LT =
EQ =
GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator
(cont’d)

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0
B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1
B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0
B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A'B'C'D' + A'BC'D + ABCD + AB'CD’

Canonical PofS vs minimal?

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 40

Definition of terms for two-level
simplification

• Implicant
– Single element of ON-set or DC-set or any group of these elements that

can be combined to form a subcube

• Prime implicant
– Implicant that can't be combined with another to form a larger subcube

• Essential prime implicant
– Prime implicant is essential if it alone covers an element of ON-set
– Will participate in ALL possible covers of the ON-set
– DC-set used to form prime implicants but not to make implicant

essential

• Objective:
– Grow implicant into prime implicants (minimize literals per term)
– Cover the ON-set with as few prime implicants as possible

(minimize number of product terms)

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 41

0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1
B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0
B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + A'B'D

essential

minimum cover: 4 essential implicants

essential

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 42

Algorithm for two-level
simplification

• Algorithm: minimum sum-of-products expression from a
Karnaugh map
– Step 1: choose an element of the ON-set
– Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

» consider top/bottom row, left/right column, and corner adjacencies
» this forms prime implicants (number of elements always a power of 2)

– Repeat Steps 1 and 2 to find all prime implicants

– Step 3: revisit the 1s in the K-map
» if covered by single prime implicant, it is essential, and participates in

final cover
» 1s covered by essential prime implicant do not need to be revisited

– Step 4: if there remain 1s not covered by essential prime implicants
» select the smallest number of prime implicants that cover the

remaining 1s

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 43

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

3 primes around AB'C'D'

Algorithm for two-level simplification
(example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 44

Recall: Design Methodology

Design Specification

Design Partition

Design Entry
Behavioral Modeling

Simulation/Functional
Verification

Pre-Synthesis
Sign-Off

Synthesize and Map
Gate-level Net List

Postsynthesis
Design Validation

Postsynthesis
Timing Verification

Test Generation and
Fault Simulation

Cell Placement/Scan
Insertation/Routing

Verify Physical and
Electrical Rules

Synthesize and Map
Gate-level Net List

Design Integration
And Verification

Design Sign-Off

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 45

Design Specification
• Written statement of functionality, timing, area,

power, testability, fault coverage, etc.
• Functional specification methods:

– State Transition Graphs
– Timing Charts
– Algorithm State Machines (like flowcharts)
– HDLs (Verilog and VHDL)

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 46

Design Partition
• Partition to form an Architecture

– Interacting functional units
» Control vs. datapath separation
» Interconnection structures within datapath
» Structural design descriptions

– Components described by their behaviors
» Register-transfer descriptions

– Top-down design method exploiting hierarchy and reuse of
design effort

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 47

Design Entry
• Primary modern method: hardware description language

– Higher productivity than schematic entry
– Inherently easy to document
– Easier to debug and correct
– Easy to change/extend and hence experiment with alternative

architectures

• Synthesis tools map description into generic technology
description

– E.g., logic equations or gates that will subsequently be mapped into
detailed target technology

– Allows this stage to be technology independent (e.g., FPGA LUTs or
ASIC standard cell libraries)

• Behavioral descriptions are how it is done in industry
today

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 48

Simulation and Functional Verification
• Simulation vs. Formal Methods
• Test Plan Development

– What functions are to be tested and how
– Testbench Development

» Testing of independent modules
» Testing of composed modules

– Test Execution and Model Verification
» Errors in design
» Errors in description syntax
» Ensure that the design can be synthesized

– The model must be VERIFIED before the design methodology
can proceed

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 49

Design Integration and Verification
• Integrate and test the individual components that

have been independently verified
• Appropriate testbench development and

integration
• Extremely important step and one that is often

the source of the biggest problems
– Individual modules thoroughly tested
– Integration not as carefully tested
– Bugs lurking in the interface behavior among modules!

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 50

Presynthesis Sign-off
• Demonstrate full functionality of the design
• Make sure that the behavior specification meets

the design specification
– Does the demonstrated input/output behavior of the HDL

description represent that which is expected from the original
design specification

• Sign-off only when all functional errors have
been eliminated

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 51

Gate-Level Synthesis and Technology
Mapping
• Once all syntax and functional errors have been

eliminated, synthesize the design from the
behavior description
– Optimized Boolean description
– Map onto target technology

• Optimizations include
– Minimize logic
– Reduce area
– Reduce power
– Balance speed vs. other resources consumed

• Produces netlist of standard cells or database to
configure target FPGA

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 52

Design Methodology in Detail

Design Specification

Design Partition

Design Entry
Behavioral Modeling

Simulation/Functional
Verification

Pre-Synthesis
Sign-Off

Synthesize and Map
Gate-level Net List

Postsynthesis
Design Validation

Postsynthesis
Timing Verification

Test Generation and
Fault Simulation

Cell Placement/Scan
Insertation/Routing

Verify Physical and
Electrical Rules

Synthesize and Map
Gate-level Net List

Design Integration
And Verification

Design Sign-Off

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 53

Logic Synthesis
• Verilog and VHDL started out as simulation languages,

but quickly people wrote programs to automatically
convert Verilog code into low-level circuit descriptions
(netlists).

• Synthesis converts Verilog (or other HDL) descriptions
to implementation technology specific primitives:

– For FPGAs: LUTs, flip-flops, and RAM blocks
– For ASICs: standard cell gate and flip-flop libraries, and memory

blocks.

Synthesis
Tool

Verilog
HDL

circuit
netlist

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 54

Die Photos: Vertex vs. Pentium IV

• FGPA Vertex chip looks remarkably structured
– Very dense, very regular structure
– Lots of volume, low NRE, high silicon overhead

• Full Custom Pentium chip somewhat more random in
structure
– Large on-chip memories (caches) are visible

• Logic Synthesis essential for both

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 55

Logic Synthesis – where EE and CS meet

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 56

Why Logic Synthesis?
1. Automatically manages many details of the design

process:
⇒ Fewer bugs
⇒ Improved productivity

2. Abstracts the design data (HDL description) from any
particular implementation technology.
– Designs can be re-synthesized targeting different chip technologies.

Ex: first implement in FPGA then later in ASIC.

3. In some cases, leads to a more optimal design than
could be achieved by manual means (ex: logic
optimization)

Why Not Logic Synthesis?
1. May lead to non-optimal designs in some cases.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 57

How does it work?
• A variety of general and ad-hoc (special case)

methods:
– Instantiation: maintains a library of primitive modules (AND, OR, etc.)

and user defined modules.
– “macro expansion” / substitution: a large set of language operators

(+, -, Boolean operators, etc.) and constructs (if-else, case) expand
into special circuits.

– Inference: special patterns are detected in the language description
and treated specially (ex: inferring memory blocks from variable
declaration and read/write statements, FSM detection and generation
from “always @ (posedge clk)” blocks).

– Logic optimization: Boolean operations are grouped and optimized
with logic minimization techniques.

– Structural reorganization: advanced techniques including sharing of
operators, and retiming of circuits (moving FFs), and others?

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 58

Synthesis vs Compilation

15

61C

Levels of Representation

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $to, 0($2)
lw $t1, 4($2)
sw$t1, 0($2)
sw$t0, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

°
°

• Compiler
– recognizes all possible

constructs in a formally
defined program language

– translates them to a
machine language
representation of
execution process

• Synthesis
– Recognizes a target

dependent subset of a
hardware description
language

– Maps to collection of
concrete hardware
resources

– Iterative tool in the design
flow

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 59

Simple Example
module foo (a,b,s0,s1,f);
input [3:0] a;
input [3:0] b;
input s0,s1;
output [3:0] f;
reg f;
always @ (a or b or s0 or s1)

if (‘s0 && s1 || s0) f=a; else f=b;
endmodule

• Should expand if-else into 4-bit wide multiplexor and optimize the
control logic:

a

b

s0
s1

f
1

0

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 60

Mapping

Constants

Data types

(net, register, parameter)

Statements

(procedural assignment, if, case,…)

Structure

(module, gate, always, …)

Verilog World

Values

(logic-0, logic-1, don’t-
case, floating, unknown)

Elements

(wire, latch, flipflop, ALU,
MUX, …)

Hardware World

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 61

Module Template
module <top_module_name>(<port list>);
/* Port declarations. followed by wire, reg, integer, task and function declarations */
/* Describe hardware with one or more continuous assignments, always blocks, module

instantiations and gate instantiations */
// Continuous assignment
wire <result_signal_name>;
assign <result_signal_name> = <expression>;
// always block
always @(<event expression>)
begin
// Procedural assignments
// if statements
// case, casex, and casez statements
// while, repeat and for loops
// user task and user function calls
end
// Module instantiation
<module_name> <instance_name> (<port list>);
// Instantiation of built-in gate primitive
gate_type_keyword (<port list>);
endmodule

• The order of these statements is
irrelevant, all execute concurrently.

• The statements between the begin
and end in an always block execute
sequentially from top to bottom.
(However, beware of blocking
versus non-blocking assignment)

• Statements within a fork-join
statement in an always block
execute concurrently.

Synthesis tools expects to find modules in this format.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 62

Supported Verilog Constructs
• Net types:

– wire, tri, supply1, supply0;
– register types: reg, integer, time (64 bit

reg); arrays of reg.

• Continuous assignments.
• Gate primitive and module

instantiations.
• always blocks, user tasks, user

functions.
• inputs, outputs, and inouts to a

module.
• All operators

– +, -, *, /, %, <, >, <=, >=, ==, !=, ===, !==, &&,
||, !, ~, &, ~&, |, ~|, ^~, ~^, ^, <<, >>, ?:, { }, {{
}})

– Note: / and % are supported for compile-
time constants and constant powers of 2.

• Procedural statements:
– if-else-if, case, casex, casez, for, repeat,

while, forever, begin, end, fork, join.

• Procedural assignments:
– blocking assignments =,
– nonblocking assignments <=
– Note: <= cannot be mixed with = for the

same register.

• Compiler directives: `define, `ifdef,
`else, `endif, `include, `undef

• Miscellaneous:
– Integer ranges and parameter ranges.
– Local declarations to begin-end block.
– Variable indexing of bit vectors on the

left and right sides of assignments.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 63

Unsupported Language Constructs

• Net types: trireg, wor, trior, wand,
triand, tri0, tri1, and charge
strength;

• register type: real.
• Built-in unidirectional and

bidirectional switches, and pull-
up, pull-down.

• Procedural statements: assign
(different from the “continuous
assignment”), deassign, wait.

• Named events and event triggers.
• UDPs (user defined primitives)

and specify blocks.
• force, release, and hierarchical

net names (for simulation only).

• delay, delay control, and drive
strength.

• scalared, vectored.
• initial block.
• Compiler directives (except

for `define, `ifdef, `else, `endif,
`include, and `undef, which
are supported).

• Calls to system tasks and
system functions (they are
only for simulation).

Generate error and halt synthesis Simply ignored

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 64

Net Data Type
• Variable of NET type maps into a wire

• wire wire
• supply0 wire connected to logic-0
• supply1 wire connected to logic-1
• tri like a wire

• wor
• wand

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 65

Register Data Type
• Reg declaration specifies size in bits
• Integer type – max size is 32 bits, synthesis may

determine size by analysis
– Wire [1:5] Brq, Rbu
– Integer Arb
– …
– Arb = Brq + Rbu “Arb is 6 bits”

• Variable of reg type maps into wire, latch or flip-
flop depending on context

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 66

Operators
• Logical operators map ino

primitive logic gates
• Arithmetic operators map into

adders, subtractors, …
– Unsigned 2s complement
– Model carry: target is one-bit wider that

source
– Watch out for *, %, and /

• Relational operators generate
comparators

• Shifts by constant amount are
just wire connections

– No logic invoved
• Variable shift amounts a whole

different story --- shifter
• Conditional expression

generates logic or MUX

addr = ~data << 2

data3

addr0

addr1

addr2data0

data1

data2

addr3

addr4

addr5

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 67

Procedural Assignments
• Verilog has two types of assignments within always blocks:
• Blocking procedural assignment “=“

– The RHS is executed and the assignment is completed before the next statement
is executed. Example:
Assume A holds the value 1 … A=2; B=A; A is left with 2, B with 2.

• Non-blocking procedural assignment “<=“
– The RHS is executed and assignment takes place at the end of the current time

step (not clock cycle). Example:
Assume A holds the value 1 … A<=2; B<=A; A is left with 2, B with 1.

• The notion of the “current time step” is tricky in synthesis, so to
guarantee that your simulation matches the behavior of the
synthesized circuit, follow these rules:
i. Use blocking assignments to model combinational logic within an always block.
ii. Use non-blocking assignments to implement sequential logic.
iii. Do not mix blocking and non-blocking assignments in the same always block.
iv. Do not make assignments to the same variable from more than one always block.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 68

Combinational Logic
CL can be generated using:

1. primitive gate instantiation:
AND, OR, etc.

2. continuous assignment (assign keyword), example:
Module adder_8 (cout, sum, a, b, cin);
output cout;
output [7:0] sum;
input cin;
input [7:0] a, b;
assign {cout, sum} = a + b + cin;
endmodule

3. Always block:
always @ (event_expression)
begin
// procedural assignment statements, if statements,
// case statements, while, repeat, and for loops.
// Task and function calls

end

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 69

Combinational logic always blocks
• Make sure all signals assigned in a combinational

always block are explicitly assigned values every
time that the always block executes. Otherwise
latches will be generated to hold the last value for
the signals not assigned values.

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
case (sel)

2'd0: out = a;
2'd1: out = b;
2'd3: out = d;

endcase
end
endmodule

• Example:
– Sel case value 2’d2

omitted.
– Out is not updated when

select line has 2’d2.
– Latch is added by tool to

hold the last value of out
under this condition.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 70

Fixes to the avoid creating latch

• add the missing select line
• Or, in general, use the “default” case:

default: out = foo;

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
case (sel)

2'd0: out = a;
2'd1: out = b;
2'd2: out = c;
2'd3: out = d;

endcase
end
endmodule

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 71

Example (cont)

• If you don’t care about the assignment in a case (for instance you know
that it will never come up) then assign the value “x” to the variable.

• The x is treated as a “don’t care” for synthesis and will simplify the logic.
(The synthesis directive “full_case” will accomplish the same, but can lead
to differences between simulation and synthesis.)

module funnymux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
case (sel)

2'd0: out = a;
2'd1: out = b;
2'd3: out = d;

default: out = 1‘bx;
endcase

end
endmodule

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 72

Latch rule
• If a variable is not assigned in all possible

executions of an always statement then a latch is
inferred

– E.g., when not assigned in all branches of an if or case
– Even a variable declared locally within an always is inferred as

a latch if incompletely assigned in a conditional statement

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 73

Assign before use ordering
module onelatch (clock, curState, nxtState);

input clock;

input curState;

output nxtState;

reg nxtState

always @ (Clock or CurrentState)

begin: L1

integer temp

if (clock) begin

temp = CurState;

NxtState = temp;

end

end

end module

D Q

CK Qn

CurState NxtState

clock

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 74

Use before Assign ordering
module twolatch (clock, curState, nxtState);

input clock;

input curState;

output nxtState;

reg nxtState

always @ (Clock or CurrentState)

begin: L1

integer temp

if (clock) begin

NxtState = temp;

temp = CurState;

end

end

end module

D Q

CK Qn

CurState
NxtState

clock

D Q

CK Qn

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 75

Combinational Logic (cont.)
• Be careful with nested IF-ELSE. They can lead to “priority logic”

– Example: 4-to-2 encoder

always @(x)
begin : encode
case (x)
4'b0001: y = 2'b00;
4'b0010: y = 2'b01;
4'b0100: y = 2'b10;
4'b1000: y = 2'b11;
default: y = 2'bxx;
endcase
end

always @(x)
begin : encode
if (x[0] == 1'b1) y = 2'b00;
else if (x[1] == 1'b1) y = 2'b01;
else if (x[2] == 1'b1) y = 2'b10;
else if (x[3] == 1'b1) y = 2'b11;
else y = 2'bxx;
end

1

0

1

0

1

0

x[0]

x[1]
x[2]

x[3]

00

01

10

11

y[1:0]

x[3:0]
00

01

10

10

y[1:0]

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 76

Sequential Logic
• Example: D flip-flop with synchronous set/reset:

module dff(q, d, clk, set, rst);
input d, clk, set, rst;
output q;
reg q;
always @(posedge clk)
if (reset)

q <= 0;
else if (set) begin

q <= 1;
else begin

q <= d;
end
endmodule

• “@ (posedge clk)” key to flip-flop
generation.

• Note in this case, priority logic is
appropriate.

• For Xilinx Virtex FPGAs, the tool
infers a native flip-flop (no extra
logic is needed for the set/reset.

d s
q

rclk
We prefer synchronous set/reset,
but how would you specify
asynchronous preset/clear?

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 77

Procedural Assignment
• Target of proc. Assignment is synthesized into a

wire, a flip-flop or a latch, depending on the
context under which the assignment appears.

• A target cannot be assigned using a blocking
assignment and a non-blocking assignment.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 78

Finite State Machines
module FSM1(clk,rst, enable, data_in, data_out);
input clk, rst, enable;
input [2:0] data_in;
output data_out;
/* Defined state encoding;
this style preferred over ‘defines*/
parameter default=2'bxx;
parameter idle=2'b00;
parameter read=2'b01;
parameter write=2'b10;
reg data_out;
reg [1:0] state, next_state;
/* always block for sequential logic*/
always @(posedge clk)

if (!rst) state <= idle;
else state <= next_state;

• Style guidelines (some of these
are to get the right result, and
some just for readability)
– Must have reset.
– Use separate always blocks for

sequential and combination
logic parts.

– Represent states with defined
labels or enumerated types.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 79

FSMs (cont.)
/* always block for CL */
always @(state or enable or data_in)
begin
case (state)
/* For each state def output and next */
idle : begin

data_out = 1’b0;
if (enable && data_in)

next_state = read;
else next_state = idle;

end
read : begin … end
write : begin … end

default : begin
next_state = default;
data_out = 1’bx;

end
endcase
end
endmodule

• Use a CASE statement in an
always to implement next state
and output logic.

• Always use a default case and
asset the state variable and
output to ‘bx:
• avoids implied latches,
• allows the use of don’t cares

leading to simplified logic.
• The “FSM compiler” within the

synthesis tool can re-encode your
states. This process is controlled
by using a synthesis attribute
(passed in a comment).
• See the Synplify guide for

details.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 80

Values x and z
• Assigning the value x to a variable tells synthesis

to treat as dont-care
• Assigning z generates tristate gate

– Z can be assigned to any variable in an assignment, but for
synthesis tis must occur under the control of a conditional
statement

module threestate(rdy, inA, inB, sel)
input rdy, inA, inB;
output sel;
reg sel;

always @(rdy or inA or inB)
if (rdy) sel = 1’bz
else sel = inA & inB

endmodule

rdy

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 81

Postsynthesis Design Validation
• Does gate-level synthesized logic implement the

same input-output function as the HDL
behavioral description?

Verilog
Behavioral Desc Gate-Level DescLogic

Synthesis

Stimulus
Generator

Testbench for Postsynthesis
Design Validation

Response
Comparator

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 82

More Help
• Online documentation for Synplify

Synthesis Tool:
– Under “refs/links” and linked to today’s

lecture on calendar
– Online examples from Synplicity.

• Bhasker (same author as Verilog
reference book)

• Trial and error with the synthesis
tool.

– Synplify will display the output of synthesis in
schematic form for your inspection. Try
different input and see what it produces.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 83

Bottom line

• Have the hardware design clear in your mind
when you write the verilog.

• Write the verilog to describe that HW
– it is a Hardware Description Language not a Hardware

Imagination Language.

• If you are very clear, the synthesis tools are likely
to figure it out.

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 84

Summary
• Timing methodology defines a set of constraints

that make life simpler – as long as they are
observed

• Boolean Algebra provides framework for logic
simplification

• Uniting to reduce minterms
• Karnaugh maps provide visual notion of

simplifications
• Algorithm for producing reduced form.
• Synthesis is part algorithms and part pattern

matching
– Work in partnership with your tool
– Learn the idioms that it does well. Create building blocks out

of them. Use those.
– Think Hardware write code that describes it.

