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Outline
• Timing Methodology for Synchronous Circuits
• Boolean Logic minimization (Kmaps)
• Synthesis – what else the tools do [to the extent 

time permits]

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 3

Review: Fundamental Design Principle

• Divide circuit into combinational logic and state
• Localize feedback loops and make it easy to break 

cycles
• Implementation of storage elements leads to various 

forms of sequential logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs
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Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk
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Timing Methodology
• Rules for interconnecting components and clocks

– Guarantee proper operation of system when strictly followed

• Approach depends on building blocks used for storage elements
– Focus on systems with edge-triggered flip-flops

» Found in programmable logic devices
– Many custom integrated circuits focus on level-sensitive latches

• Basic rules for correct timing:
– (1) Correct inputs, with respect to time, are provided to the flip-flops

» Everything is stable when the clock ticks
– (2) No flip-flop changes state more than once per clocking event
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there is a timing "window" 
around the clocking event 
during which the input must 
remain stable and unchanged 
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing Methodologies (cont’d)
• Definition of terms

– clock: periodic event, causes state of storage element to 
change; can be rising or falling edge, or high or low level

– setup time: minimum time before the clocking event by which 
the input must be stable (Tsu)

– hold time: minimum time after the clocking event until which 
the input must remain stable (Th)
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behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of Latches and Flip-
Flops
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all measurements are made from the clocking event, i.e.
the rising edge of the clock

Typical Timing Specifications

• Positive edge-triggered D flip-flop
– Setup and hold times
– Minimum clock width
– Propagation delays (low to high, high to low, max and typical)

Th
5ns

Tw 25ns

Tplh
25ns
13ns

Tphl
40ns
25ns

Tsu
20ns

D

CLK

Q

Tsu
20ns

Th
5ns
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IN

Q0

Q1

CLK

100

Cascading Edge-triggered Flip-Flops
• Shift register

– New value goes into first stage
– While previous value of first stage goes into second stage
– Consider setup/hold/propagation delays (prop must be > hold)

CLK

IN
Q0 Q1

D Q D Q OUT
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timing constraints
guarantee proper

operation of
cascaded components

assumes uniform 
distribution of the clock

Cascading Edge-triggered Flip-Flops 
• Why this works

– Propagation delays exceed hold times
– Clock width constraint exceeds setup time
– This guarantees following stage will latch current value before 

it changes to new value

Tsu
4ns

Tp
3ns

Th
2ns

In

Q0

Q1

CLK

Tsu
4ns

Tp
3ns

Th
2ns

Tp + Tsu < Tclk

Tp > Th
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IN

Q0

Q1

CLK

100

Cascading Edge-triggered Flip-Flops
• Shift register

– New value goes into first stage
– While previous value of first stage goes into second stage
– Consider setup/hold/propagation delays (prop must be > hold)

CLK

IN
Q0 Q1

D Q D Q OUT

Delay
Clk1

Clk1
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original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

CLK1 is a delayed
version of CLK0

In
Q0
Q1

CLK0
CLK1

100

Clock Skew
• The problem

– Correct behavior assumes next state of all storage elements
determined by all storage elements at the same time

– Difficult in high-performance systems because time for clock 
to arrive at flip-flop is comparable to delays through logic (and 
will soon become greater than logic delay)

– Effect of skew on cascaded flip-flops:
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timing constraints
guarantee proper

operation of
cascaded components

assumes uniform 
distribution of the clock

Cascading Edge-triggered Flip-Flops 
• Why this works (redux)

– Propagation delays exceed hold times
– Clock width constraint exceeds setup time
– This guarantees following stage will latch current value before 

it changes to new value

Tsu
4ns

Tp
3ns

Th
2ns

In

Q0

Q1

CLK

Tsu
4ns

Tp
3ns

Th
2ns

Tp + Tsu + Tskew < Tclk

Tp - Tskew > Th
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Type When inputs are sampledWhen output is valid
unclocked always propagation delay from input change
latch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)

edge of clock)
master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock

edge of clock)
negative clock hi-to-lo transition propagation delay from falling edge
edge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

Comparison of Latches and Flip-Flops
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Summary of Latches and Flip-Flops

• Development of D-FF
– Level-sensitive used in custom integrated circuits

» can be made with 4 switches
– Edge-triggered used in programmable logic devices
– Good choice for data storage register

• Historically J-K FF was popular but now never used
– Similar to R-S but with 1-1 being used to toggle output (complement state)
– Good in days of TTL/SSI (more complex input function: 

D = JQ' + K'Q
– Not a good choice for PLAs as it requires two inputs
– Can always be implemented using D-FF

• Preset and clear inputs are highly desirable on flip-flops
– Used at start-up or to reset system to a known state
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Logic Minimization
• One piece of synthesis
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Quick Review: Canonical Forms
• Standard form for a Boolean expression - unique algebraic 

expression directly from a true table (TT) description.
• Two Types:

* Sum of Products (SOP)
* Product of Sums (POS)

• Sum of Products (disjunctive normal form, minterm expansion).  
Example:

minterms a b c  f  f’
a’b’c’ 0 0 0  0 1
a’b’c 0 0 1  0 1
a’bc’ 0 1 0  0 1
a’bc 0 1 1  1 0
ab’c’ 1 0 0  1 0
ab’c 1 0 1  1 0
abc’ 1 1 0  1 0
abc 1 1 1  1 0 

One product (and) term for each 1 in f:
f = a’bc + ab’c’ + ab’c +abc’ +abc
f’ = a’b’c’ + a’b’c + a’bc’

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 18

Quick Review: Sum of Products (cont.)

Canonical Forms are usually not minimal:
Our Example:

f = a’bc + ab’c’ + ab’c + abc’ +abc (xy’ + xy = x) 
= a’bc + ab’ + ab
= a’bc + a (x’y + x = y + x)
= a + bc

f’ = a’b’c’ + a’b’c + a’bc’
= a’b’ + a’bc’
= a’ ( b’ + bc’ )
= a’ ( b’ + c’ )
= a’b’ + a’c’
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Quick Review: Canonical Forms
• Product of Sums (conjunctive normal form, maxterm expansion).  

Example:
maxterms a b c  f  f’
a+b+c 0 0 0  0 1
a+b+c’ 0 0 1  0 1
a+b’+c 0 1 0  0 1
a+b’+c’ 0 1 1  1 0
a’+b+c 1 0 0  1 0
a’+b+c’ 1 0 1  1 0
a’+b’+c 1 1 0  1 0
a’+b’+c’ 1 1 1  1 0

Mapping from SOP to POS (or POS to SOP):  Derive truth table then 
proceed.

One sum (or) term for each 0 in f:
f = (a+b+c)(a+b+c’)(a+b’+c)
f’ = (a+b’+c’)(a’+b+c)(a’+b+c’)

(a’+b’+c)(a+b+c’)
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A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should 
never be encountered in practice 
– "don't care" about associated 
output values, can be exploited
in minimization

Incompletely specified functions

• Example: binary coded decimal increment by 1
– BCD digits encode decimal digits 0 – 9 in bit patterns 0000 – 1001

don't care (DC) set of W

on-set of W
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Implementing the TT
• Circuit must “cover the 1s” and “none of the 0s”.
• Don’t care can go either way

A B | f

0 0 | 0

0 1 | 1

1 0 | 1

1 1 | 1

A B | f

0 0 | 0

0 1 | 1

1 1 | 1

1 0 | 1
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A'B'+AB' = (A'+A)B' = B'

The Uniting Theorem
• Key tool to simplification: A (B' + B) = A
• Essence of simplification of two-level logic

– Find two element subsets of the ON-set where only one 
variable changes its value – this single varying variable can 
be eliminated and a single product term used to represent 
both elements
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1-cube
X

0 1

Boolean cubes
• Visual technique for identifying when the uniting 

theorem can be applied
• n input variables = n-dimensional "cube“
• Neighbors “address” differs by one bit flip

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes) 
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean 
cubes
• Uniting theorem combines two "faces" of a cube 

into a larger "face"
• Example:

A

B

11

00

01

10

F
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A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Cout = BCin+AB+ACin

A(B+B')Cin

the on-set is completely covered by 
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Three variable example
• Binary full-adder carry-out logic

A

B C

000

111

101

(A'+A)BCin

AB(Cin'+Cin)
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F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2
represents an expression in one variable       
i.e., 3 dimensions  – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes
• Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001
010

011
110
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m-dimensional cubes in a n-
dimensional Boolean space
• In a 3-cube (three variables):

– 0-cube, i.e., a single node, yields a term in 3 literals
– 1-cube, i.e., a line of two nodes, yields a term in 2 literals
– 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
– 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

• In general,
– m-subcube within an n-cube (m < n) yields a term with n – m 

literals
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Announcements
• Typo corrected on HW3, prob. 1
• P3, yes there is an input to each controller 

described in the text that is not shown in the 
picture.

• HW4 out tonight – it is a mid term review
• Review session Tues
• Mid term next Thurs in 125 Cory

– Everything you want to know at hkn/student/online/cs/150 …
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A B F
0 0 1
0 1 0
1 0 1
1 1 0

Karnaugh maps
• Flat map of Boolean cube

– Wrap–around at edges
– Hard to draw and visualize for more than 4 dimensions
– Virtually impossible for more than 6 dimensions

• Alternative to truth-tables to help visualize 
adjacencies
– Guide to applying the uniting theorem
– On-set elements with only one variable changing value are 

adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1
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Karnaugh maps (cont’d)
• Numbering scheme based on Gray–code

– e.g., 00, 01, 11, 10
– 2n values of n bits where each differs from next by one bit flip

» Hamiltonian circuit through n-cube
– Only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D
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Adjacencies in Karnaugh maps
• Wrap from first to last column
• Wrap top row to bottom row

000 010

001 011

110 100

111 101C
B

A

A

B C

000

111

101

100

001
010

011
110
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obtain the
complement
of the function 
by covering 0s
with subcubes

Karnaugh map examples
• F =

• Cout =

• f(A,B,C) = Σm(0,4,6,7) 

0 0

0 1

1 0

1 1Cin
B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C
B

A

B’

AB

AC

+ ACin+ BCin

+ B’C’ + AB’
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F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) = 

More Karnaugh map examples

0 0

0 0

1 1

1 1C
B

A

1 0

0 0

0 1

1 1C
B

A

0 1

1 1

1 0

0 0C
B

A

A

= AC + B’C’

= BC’ + A’C
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find the smallest number of the largest possible 
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

K-map: 4-variable interactive quiz

• F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)
F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C
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C + B’D’

find the smallest number of the largest possible 
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

• F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)
F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD
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+ B’C’D

Karnaugh maps: don’t cares
• f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)

– without don't cares
» f = 

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A’D
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Karnaugh maps: don’t cares (cont’d)
• f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)

– f = A'D + B'C'D without don't cares
– f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more 
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A'D

by using don't care as a "1"
a 2-cube can be formed 
rather than a 1-cube to cover
this node

+ C'D
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we'll need a 4-variable Karnaugh map 
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B
C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table
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A' B' D  +  A' C  +  B' C D

B C' D'  +  A C'  +  A B D'

LT =
EQ =
GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator 
(cont’d)

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0
B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1
B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0
B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A'B'C'D'  +  A'BC'D  +  ABCD  +  AB'CD’

Canonical PofS vs minimal?
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Definition of terms for two-level 
simplification

• Implicant
– Single element of ON-set or DC-set or any group of these elements that 

can be combined to form a subcube

• Prime implicant
– Implicant that can't be combined with another to form a larger subcube

• Essential prime implicant
– Prime implicant is essential if it alone covers an element of ON-set
– Will participate in ALL possible covers of the ON-set
– DC-set used to form prime implicants but not to make implicant

essential

• Objective:
– Grow implicant into prime implicants (minimize literals per term)
– Cover the ON-set with as few prime implicants as possible

(minimize number of product terms)
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0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1
B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0
B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + A'B'D

essential

minimum cover: 4 essential implicants

essential
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Algorithm for two-level 
simplification

• Algorithm: minimum sum-of-products expression from a 
Karnaugh map
– Step 1: choose an element of the ON-set
– Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

» consider top/bottom row, left/right column, and corner adjacencies
» this forms prime implicants (number of elements always a power of 2)

– Repeat Steps 1 and 2 to find all prime implicants

– Step 3: revisit the 1s in the K-map
» if covered by single prime implicant, it is essential, and participates in 

final cover
» 1s covered by essential prime implicant do not need to be revisited

– Step 4: if there remain 1s not covered by essential prime implicants
» select the smallest number of prime implicants that cover the 

remaining 1s
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X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

3 primes around AB'C'D'

Algorithm for two-level simplification 
(example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C
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Recall: Design Methodology

Design Specification

Design Partition

Design Entry
Behavioral Modeling

Simulation/Functional
Verification

Pre-Synthesis
Sign-Off

Synthesize and Map
Gate-level Net List

Postsynthesis
Design Validation

Postsynthesis
Timing Verification

Test Generation and
Fault Simulation

Cell Placement/Scan
Insertation/Routing

Verify Physical and
Electrical Rules

Synthesize and Map
Gate-level Net List

Design Integration
And Verification

Design Sign-Off
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Design Specification
• Written statement of functionality, timing, area, 

power, testability, fault coverage, etc.
• Functional specification methods:

– State Transition Graphs
– Timing Charts
– Algorithm State Machines (like flowcharts)
– HDLs (Verilog and VHDL)
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Design Partition
• Partition to form an Architecture

– Interacting functional units
» Control vs. datapath separation
» Interconnection structures within datapath
» Structural design descriptions

– Components described by their behaviors
» Register-transfer descriptions

– Top-down design method exploiting hierarchy and reuse of 
design effort
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Design Entry
• Primary modern method: hardware description language

– Higher productivity than schematic entry
– Inherently easy to document
– Easier to debug and correct
– Easy to change/extend and hence experiment with alternative 

architectures

• Synthesis tools map description into generic technology 
description

– E.g., logic equations or gates that will subsequently be mapped into 
detailed target technology

– Allows this stage to be technology independent (e.g., FPGA LUTs or 
ASIC standard cell libraries)

• Behavioral descriptions are how it is done in industry 
today
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Simulation and Functional Verification
• Simulation vs. Formal Methods
• Test Plan Development

– What functions are to be tested and how
– Testbench Development

» Testing of independent modules
» Testing of composed modules

– Test Execution and Model Verification
» Errors in design
» Errors in description syntax
» Ensure that the design can be synthesized

– The model must be VERIFIED before the design methodology 
can proceed
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Design Integration and Verification
• Integrate and test the individual components that 

have been independently verified
• Appropriate testbench development and 

integration
• Extremely important step and one that is often 

the source of the biggest problems
– Individual modules thoroughly tested
– Integration not as carefully tested
– Bugs lurking in the interface behavior among modules!
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Presynthesis Sign-off
• Demonstrate full functionality of the design
• Make sure that the behavior specification meets 

the design specification
– Does the demonstrated input/output behavior of the HDL 

description represent that which is expected from the original 
design specification

• Sign-off only when all functional errors have 
been eliminated
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Gate-Level Synthesis and Technology 
Mapping
• Once all syntax and functional errors have been 

eliminated, synthesize the design from the 
behavior description
– Optimized Boolean description
– Map onto target technology

• Optimizations include
– Minimize logic
– Reduce area
– Reduce power
– Balance speed vs. other resources consumed

• Produces netlist of standard cells or database to 
configure target FPGA
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Design Methodology in Detail

Design Specification

Design Partition

Design Entry
Behavioral Modeling

Simulation/Functional
Verification

Pre-Synthesis
Sign-Off

Synthesize and Map
Gate-level Net List

Postsynthesis
Design Validation

Postsynthesis
Timing Verification

Test Generation and
Fault Simulation

Cell Placement/Scan
Insertation/Routing

Verify Physical and
Electrical Rules

Synthesize and Map
Gate-level Net List

Design Integration
And Verification

Design Sign-Off
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Logic Synthesis 
• Verilog and VHDL started out as simulation languages, 

but quickly people wrote programs to automatically 
convert Verilog code into low-level circuit descriptions 
(netlists).

• Synthesis converts Verilog (or other HDL) descriptions 
to implementation technology specific primitives:

– For FPGAs: LUTs, flip-flops, and RAM blocks
– For ASICs: standard cell gate and flip-flop libraries, and memory 

blocks.

Synthesis
Tool

Verilog
HDL

circuit
netlist
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Die Photos: Vertex vs. Pentium IV

• FGPA Vertex chip looks remarkably structured
– Very dense, very regular structure
– Lots of volume, low NRE, high silicon overhead

• Full Custom Pentium chip somewhat more random in 
structure
– Large on-chip memories (caches) are visible

• Logic Synthesis essential for both
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Logic Synthesis – where EE and CS meet
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Why Logic Synthesis?
1. Automatically manages many details of the design 

process:
⇒ Fewer bugs
⇒ Improved productivity

2. Abstracts the design data (HDL description) from any 
particular implementation technology.
– Designs can be re-synthesized targeting different chip technologies.  

Ex:  first implement in FPGA then later in ASIC.

3. In some cases, leads to a more optimal design than 
could be achieved by manual means (ex: logic 
optimization)

Why Not Logic Synthesis?
1. May lead to non-optimal designs in some cases.
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How does it work?
• A variety of general and ad-hoc (special case) 

methods:
– Instantiation: maintains a library of primitive modules (AND, OR, etc.) 

and user defined modules.
– “macro expansion” / substitution: a large set of language operators 

(+, -, Boolean operators, etc.) and constructs (if-else, case) expand 
into special circuits.

– Inference: special patterns are detected in the language description 
and treated specially (ex: inferring memory blocks from variable
declaration and read/write statements, FSM detection and generation 
from “always @ (posedge clk)” blocks).

– Logic optimization: Boolean operations are grouped and optimized 
with logic minimization techniques.

– Structural reorganization: advanced techniques including sharing of 
operators, and retiming of circuits (moving FFs), and others?
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Synthesis vs Compilation

15

61C

Levels of Representation

High Level Language 
Program (e.g., C)

Assembly  Language 
Program (e.g.,MIPS)

Machine  Language 
Program (MIPS)

Control Signal 
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $to, 0($2)
lw $t1, 4($2)
sw$t1, 0($2)
sw$t0, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110 
1100 0110 1010 1111 0101 1000 0000 1001 
0101 1000 0000 1001 1100 0110 1010 1111

°
°

• Compiler 
– recognizes all possible 

constructs in a formally 
defined program language

– translates them to a 
machine language 
representation of 
execution process

• Synthesis
– Recognizes a target 

dependent subset of a 
hardware description 
language

– Maps to collection of 
concrete hardware 
resources

– Iterative tool in the design 
flow
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Simple Example
module foo (a,b,s0,s1,f);
input [3:0] a;
input [3:0] b;
input s0,s1;
output [3:0] f;
reg f;
always @ (a or b or s0 or s1)

if (‘s0 && s1 || s0) f=a; else f=b;
endmodule

• Should expand if-else into 4-bit wide multiplexor and optimize the 
control logic:

a

b

s0
s1

f
1

0
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Mapping

Constants

Data types

(net, register, parameter)

Statements

(procedural assignment, if, case,…)

Structure

(module, gate, always, …)

Verilog World

Values

(logic-0, logic-1, don’t-
case, floating, unknown)

Elements 

(wire, latch, flipflop, ALU, 
MUX, …)

Hardware World
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Module Template
module <top_module_name>(<port list>);
/* Port declarations. followed by wire, reg, integer, task and function declarations */
/* Describe hardware with one or more continuous assignments, always blocks,  module 

instantiations and gate instantiations */
// Continuous assignment
wire <result_signal_name>;
assign <result_signal_name> = <expression>;
// always block
always @(<event expression>)
begin
// Procedural assignments
// if statements
// case, casex, and casez statements
// while, repeat and for loops
// user task and user function calls
end
// Module instantiation
<module_name> <instance_name> (<port list>);
// Instantiation of built-in gate primitive
gate_type_keyword (<port list>);
endmodule

• The order of these statements is 
irrelevant, all execute concurrently.

• The statements between the begin
and end in an always block execute 
sequentially from top to bottom.  
(However, beware of blocking 
versus non-blocking assignment)

• Statements within a fork-join 
statement in an always block 
execute concurrently.

Synthesis tools expects to find modules in this format.
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Supported Verilog Constructs
• Net types: 

– wire, tri, supply1, supply0;
– register types: reg, integer, time (64 bit 

reg); arrays of reg.

• Continuous assignments.
• Gate primitive and module 

instantiations.
• always blocks, user tasks, user 

functions.
• inputs, outputs, and inouts to a 

module.
• All operators

– +, -, *, /, %, <, >, <=, >=, ==, !=, ===, !==, &&, 
||, !, ~, &, ~&, |, ~|, ^~, ~^, ^, <<, >>, ?:, { }, {{ 
}})

– Note: / and % are supported for compile-
time constants and constant powers of 2.

• Procedural statements: 
– if-else-if, case, casex, casez, for, repeat, 

while, forever, begin, end, fork, join.

• Procedural assignments: 
– blocking assignments =, 
– nonblocking assignments <= 
– Note: <= cannot be mixed with = for the 

same register.

• Compiler directives: `define, `ifdef, 
`else, `endif, `include, `undef

• Miscellaneous:
– Integer ranges and parameter ranges.
– Local declarations to begin-end block.
– Variable indexing of bit vectors on the 

left and right sides of assignments.
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Unsupported Language Constructs

• Net types: trireg, wor, trior, wand, 
triand, tri0, tri1, and charge 
strength; 

• register type: real.
• Built-in unidirectional and 

bidirectional switches, and pull-
up, pull-down.

• Procedural statements: assign 
(different from the “continuous 
assignment”), deassign, wait.

• Named events and event triggers.
• UDPs (user defined primitives) 

and specify blocks.
• force, release, and hierarchical 

net names (for simulation only).

• delay, delay control, and drive 
strength.

• scalared, vectored.
• initial block.
• Compiler directives (except 

for `define, `ifdef, `else, `endif, 
`include, and `undef, which 
are supported).

• Calls to system tasks and 
system functions (they are 
only for simulation).

Generate error and halt synthesis Simply ignored
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Net Data Type
• Variable of NET type maps into a wire

• wire wire
• supply0  wire connected to logic-0
• supply1 wire connected to logic-1
• tri like a wire

• wor
• wand
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Register Data Type
• Reg declaration specifies size in bits
• Integer type – max size is 32 bits, synthesis may 

determine size by analysis
– Wire [1:5] Brq, Rbu
– Integer Arb
– …
– Arb = Brq + Rbu “Arb is 6 bits”

• Variable of reg type maps into wire, latch or flip-
flop depending on context
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Operators
• Logical operators map ino

primitive logic gates
• Arithmetic operators map into 

adders, subtractors, …
– Unsigned 2s complement
– Model carry: target is one-bit wider that 

source
– Watch out for *, %, and /

• Relational operators generate 
comparators

• Shifts by constant amount are 
just wire connections

– No logic invoved
• Variable shift amounts a whole 

different story --- shifter
• Conditional expression 

generates logic or MUX

addr = ~data << 2

data3

addr0

addr1

addr2data0

data1

data2

addr3

addr4

addr5
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Procedural Assignments
• Verilog has two types of assignments within always blocks:
• Blocking procedural assignment “=“

– The RHS is executed and the assignment is completed before the next statement 
is executed.  Example:
Assume A holds the value 1 … A=2;  B=A;   A is left with 2, B with 2.

• Non-blocking procedural assignment “<=“
– The RHS is executed and assignment takes place at the end of the current time 

step (not clock cycle).  Example:
Assume A holds the value 1 … A<=2;  B<=A;   A is left with 2, B with 1.

• The notion of the “current time step” is tricky in synthesis, so to 
guarantee that your simulation matches the behavior of the 
synthesized circuit, follow these rules:
i. Use blocking assignments to model combinational logic within an always block.
ii. Use non-blocking assignments to implement sequential logic.
iii. Do not mix blocking and non-blocking assignments in the same always block.
iv. Do not make assignments to the same variable from more than one always block.
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Combinational Logic 
CL can be generated using:

1. primitive gate instantiation:
AND, OR, etc.

2. continuous assignment (assign keyword), example:
Module adder_8 (cout, sum, a, b, cin);
output cout;
output [7:0] sum;
input cin;
input [7:0] a, b;
assign {cout, sum} = a + b + cin;
endmodule

3. Always block:
always @ (event_expression)
begin
// procedural assignment statements, if statements, 
// case statements, while, repeat, and for loops.  
// Task and function calls

end
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Combinational logic always blocks
• Make sure all signals assigned in a combinational 

always block are explicitly assigned values every
time that the always block executes.  Otherwise 
latches will be generated to hold the last value for 
the signals not assigned values.

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
case (sel)

2'd0: out = a;
2'd1: out = b;
2'd3: out = d;

endcase
end
endmodule

• Example:
– Sel case value 2’d2 

omitted.
– Out is not updated when 

select line has 2’d2.
– Latch is added by tool to 

hold the last value of out 
under this condition.
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Fixes to the avoid creating latch

• add the missing select line
• Or, in general, use the “default” case:

default:  out = foo;

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
case (sel)

2'd0: out = a;
2'd1: out = b;
2'd2:     out = c;
2'd3: out = d;

endcase
end
endmodule
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Example (cont)

• If you don’t care about the assignment in a case (for instance you know 
that it will never come up) then assign the value “x” to the variable.  

• The x is treated as a “don’t care” for synthesis and will simplify the logic.  
(The synthesis directive “full_case” will accomplish the same, but can lead 
to differences between simulation and synthesis.)

module funnymux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
case (sel)

2'd0: out = a;
2'd1: out = b;
2'd3: out = d;

default:  out = 1‘bx;
endcase

end
endmodule

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 72

Latch rule
• If a variable is not assigned in all possible 

executions of an always statement then a latch is 
inferred

– E.g., when not assigned in all branches of an if or case
– Even a variable declared locally within an always is inferred as

a latch if incompletely assigned in a conditional statement
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Assign before use ordering
module onelatch (clock, curState, nxtState);

input clock;

input curState;

output nxtState;

reg nxtState

always @ (Clock or CurrentState)

begin: L1

integer temp

if (clock) begin

temp = CurState;

NxtState = temp;

end

end

end module

D Q

CK Qn

CurState NxtState

clock
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Use before Assign ordering
module twolatch (clock, curState, nxtState);

input clock;

input curState;

output nxtState;

reg nxtState

always @ (Clock or CurrentState)

begin: L1

integer temp

if (clock) begin

NxtState = temp;

temp = CurState;

end

end

end module

D Q

CK Qn

CurState
NxtState

clock

D Q

CK Qn
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Combinational Logic (cont.)
• Be careful with nested IF-ELSE.  They can lead to “priority logic”

– Example: 4-to-2 encoder

always @(x) 
begin : encode 
case (x) 
4'b0001: y = 2'b00; 
4'b0010: y = 2'b01; 
4'b0100: y = 2'b10; 
4'b1000: y = 2'b11; 
default: y = 2'bxx; 
endcase
end 

always @(x) 
begin : encode 
if (x[0] == 1'b1) y = 2'b00; 
else if (x[1] == 1'b1) y = 2'b01; 
else if (x[2] == 1'b1) y = 2'b10; 
else if (x[3] == 1'b1) y = 2'b11; 
else y = 2'bxx; 
end 

1

0

1

0

1

0

x[0]

x[1]
x[2]

x[3]

00

01

10

11

y[1:0]

x[3:0]
00

01

10

10

y[1:0]

9/20/07 EECS 150, Fa07, Lec 08-timing-synth 76

Sequential Logic
• Example: D flip-flop with synchronous set/reset:

module dff(q, d, clk, set, rst);
input d, clk, set, rst;
output q;
reg q;
always @(posedge clk)
if (reset)

q <= 0;
else if (set) begin

q <= 1;
else begin

q <= d;
end
endmodule

• “@ (posedge clk)” key to flip-flop 
generation.

• Note in this case, priority logic is 
appropriate.

• For Xilinx Virtex FPGAs, the tool 
infers a native flip-flop (no extra 
logic is needed for the set/reset.

d s
q

rclk
We prefer synchronous set/reset, 
but how would you specify 
asynchronous preset/clear?
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Procedural Assignment
• Target of proc. Assignment is synthesized into a 

wire, a flip-flop or a latch, depending on the 
context under which the assignment appears.

• A target cannot be assigned using a blocking 
assignment and a non-blocking assignment.
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Finite State Machines
module FSM1(clk,rst, enable, data_in, data_out);
input clk, rst, enable;
input [2:0] data_in;
output data_out;
/* Defined state encoding; 
this style preferred over ‘defines*/
parameter default=2'bxx;
parameter idle=2'b00;
parameter read=2'b01;
parameter write=2'b10;
reg data_out;
reg [1:0] state, next_state;
/* always block for sequential logic*/
always @(posedge clk)

if (!rst) state <= idle;
else state <= next_state;

• Style guidelines (some of these 
are to get the right result, and 
some just for readability) 
– Must have reset.
– Use separate always blocks for 

sequential and combination 
logic parts.

– Represent states with defined 
labels or enumerated types.
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FSMs (cont.)
/* always block for CL */
always @(state or enable or data_in) 
begin
case (state)
/* For each state def output and next */
idle : begin

data_out = 1’b0;
if (enable && data_in)  

next_state = read;
else next_state = idle;

end
read : begin … end
write : begin … end

default : begin
next_state = default;
data_out = 1’bx;

end
endcase
end
endmodule

• Use a CASE statement in an 
always to implement next state 
and output logic.

• Always use a default case and 
asset the state variable and 
output to ‘bx:
• avoids implied latches,
• allows the use of don’t cares 

leading to simplified logic.
• The “FSM compiler” within the 

synthesis tool can re-encode your 
states.  This process is controlled 
by using a synthesis attribute 
(passed in a comment).
• See the Synplify guide for 

details.
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Values x and z
• Assigning the value x to a variable tells synthesis 

to treat as dont-care
• Assigning z generates tristate gate

– Z can be assigned to any variable in an assignment, but for 
synthesis tis must occur under the control of a conditional 
statement

module threestate(rdy, inA, inB, sel)
input rdy, inA, inB;
output sel;
reg sel;

always @(rdy or inA or inB)
if (rdy) sel = 1’bz
else sel = inA & inB

endmodule

rdy
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Postsynthesis Design Validation
• Does gate-level synthesized logic implement the 

same input-output function as the HDL 
behavioral description?

Verilog
Behavioral Desc Gate-Level DescLogic

Synthesis

Stimulus
Generator

Testbench for Postsynthesis
Design Validation

Response
Comparator
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More Help
• Online documentation for Synplify

Synthesis Tool:
– Under “refs/links” and linked to today’s 

lecture on calendar
– Online examples from Synplicity.

• Bhasker (same author as Verilog
reference book)

• Trial and error with the synthesis 
tool.

– Synplify will display the output of synthesis in 
schematic form for your inspection.  Try 
different input and see what it produces.
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Bottom line

• Have the hardware design clear in your mind 
when you write the verilog.

• Write the verilog to describe that HW
– it is a Hardware Description Language not a Hardware 

Imagination Language.

• If you are very clear, the synthesis tools are likely 
to figure it out.
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Summary
• Timing methodology defines a set of constraints 

that make life simpler – as long as they are 
observed

• Boolean Algebra provides framework for logic 
simplification

• Uniting to reduce minterms
• Karnaugh maps provide visual notion of 

simplifications
• Algorithm for producing reduced form.
• Synthesis is part algorithms and part pattern 

matching
– Work in partnership with your tool
– Learn the idioms that it does well.  Create building blocks out 

of them.  Use those.
– Think Hardware write code that describes it.


