
9/13/07 EECS150 F07 Culler Lec 6 1

EECS 150 - Components and Design 
Techniques for Digital Systems

Lec 06 – Using FSMs
9-13-07

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http:/inst.eecs.berkeley.edu/~cs150

9/13/07 EECS150 F07 Culler Lec 6 2

Outline
• Review FSMs
• Mapping to FPGAs
• Typical uses of FSMs
• Synchronous Seq. Circuits – safe composition
• Timing
• FSMs in verilog

9/13/07 EECS150 F07 Culler Lec 6 3

Review: Typical Controller: state 

Combinational 

Logic

state

state(t+1) = F ( state(t) )

state Next state

101111

111011

001101

000001

010110

011010

110100

100000

o0o1o2i0i1i2

Example: Gray Code

Sequence

000 001 011 010 110 111 101 100

9/13/07 EECS150 F07 Culler Lec 6 4

Typical Controller: state + output

Combinational 

Logic

state

state(t+1) = F ( state(t) )

state Next state

101111

111011

001101

000001

010110

011010

110100

100000

o0o1o2i0i1i2

Output (t) = G( state(t) )

0

1

1

0

1

0

0

1

odd

000/0 001/1 011/0 010/1 110/0 111/1 101/0 100/1



9/13/07 EECS150 F07 Culler Lec 6 5

Typical Controller: state + output + input

Combinational 

Logic

state

state(t+1) = F ( state(t), input (t) )

state Next state

101111

111011

001101

000001

010110

011010

110100

100000

o0o1o2i0i1i2

Output (t) = G( state(t) )

0

0

0

0

0

0

0

0

1      x    x    x      0   0   0

clr

000/0 001/1 011/0 010/1 110/0 111/1 101/0 100/1

Input

0

1

1

0

1

0

0

1

odd

clr=1

clr=0

clr=?
9/13/07 EECS150 F07 Culler Lec 6 6

Review: Two Kinds of FSMs
• Moore Machine         vs Mealy Machine

Combinational 

Logic
state

state(t+1) = F ( state(t), input)

Output (t) = 

G( state(t), Input )

Input

state

state(t+1) = F ( state(t), input(t))

Output (t) = G( state(t))
Input

State / out Input State Input / Out

9/13/07 EECS150 F07 Culler Lec 6 7

In = 0

In = 1

In = 0In = 1

100

010

110

111001

Review: Finite State Machine 
Representations
• States: determined by possible values in 

sequential storage elements
• Transitions: change of state
• Clock: controls when state can change by 

controlling storage elements

• Sequential Logic
– Sequences through a series of states
– Based on sequence of values on input signals
– Clock period defines elements of sequence

9/13/07 EECS150 F07 Culler Lec 6 8

Review: Formal Design Process

• Circuit Diagram:

– XOR gate for ns calculation
– DFF to hold present state
– no logic needed for output

Logic equations from 
table:

OUT = PS
NS = PS xor IN

nsps

• Review of Design Steps:
1. Circuit functional 
specification
2. State Transition Diagram
3. Symbolic State Transition 
Table
4. Encoded State Transition 
Table
5. Derive Logic Equations
6. Circuit Diagram

FFs for state
CL for NS and OUT

Take this seriously!



9/13/07 EECS150 F07 Culler Lec 6 9

Formal Design Process 

• “State Transition Diagram”
– circuit is in one of two states.
– transition on each cycle with each 

new input, over exactly one arc 
(edge).

– Output depends on which state 
the circuit is in.

Parity
Checker

IN OUTbit stream
0 if even parity
1 if odd parity

example:   0    0    1    1    1    0    1
    even     even     odd     even     odd     odd    even

CLK

time

9/13/07 EECS150 F07 Culler Lec 6 10

Formal Design Process
• State Transition Table:

• Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present                   next
state       OUT  IN   state

EVEN       0     0    EVEN
EVEN       0     1     ODD
ODD         1     0     ODD
ODD         1     1     EVEN

present state (ps)   OUT   IN   next state (ns)
0                    0      0                0
0                    0      1                1
1                    1      0                1
1                    1      1                0

Derive logic equations 
from table (how?):

OUT = PS
NS = PS xor IN

9/13/07 EECS150 F07 Culler Lec 6 11

Review: What’s an FSM?

• Next state is function of state 
and input

• Moore Machine: output is a 
function of the state

• Mealy Machine: output is a 
function of state and input

Often PLAs

State / output
inputA

inputB

State 
inputA/outputA

inputB/outputB

Which is which?

9/13/07 EECS150 F07 Culler Lec 6 12

How to quickly implement the State 
Transition Diagram?



9/13/07 EECS150 F07 Culler Lec 6 13

One Answer: Xilinx 4000 CLB

9/13/07 EECS150 F07 Culler Lec 6 14

Two 4-input functions, registered output

9/13/07 EECS150 F07 Culler Lec 6 15

5-input function, combinational 
output

9/13/07 EECS150 F07 Culler Lec 6 16

Recall: Parallel to Serial Converter

//Parallel to Serial converter
module ParToSer(LD, X, out, CLK); 

input [3:0] X;
input LD, CLK;
output out; 
reg out;
reg [3:0] Q;
assign out = Q[0];
always @ (posedge CLK) begin

if (LD) Q <= X;
else Q <= {1’b0,Q[3:1]};

end
endmodule // ParToSer

One common use of FSMs is in 
adapters from one subsystem to 
another.

• different data widths

• different bit rates

• different protocols, …



9/13/07 EECS150 F07 Culler Lec 6 17

Example: Byte-bit stream
Byte FIFO

pop

Serial link

Shift register

controller

LD

bit 0/pop

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7 / LD

init / LD

9/13/07 EECS150 F07 Culler Lec 6 18

Byte-bit stream with Rate Matching

• How would you implement this FSM?

Byte FIFO

pop

Serial link

Shift register

controller

LD

bit 0/pop

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7 / LD

init / LD

rdy

bit 0’
~rdy

~rdyrdy

~rdyrdy

~rdyrdy

~rdyrdy

~rdyrdy

~rdyrdy

~rdyrdy

~rdy
rdy

9/13/07 EECS150 F07 Culler Lec 6 19

Another example: bus protocols
• A bus is:

– shared communication link
– single set of wires used to connect multiple subsystems

• A Bus is also a fundamental tool for composing 
large, complex systems (more later in the term)

– systematic means of abstraction

Control

Datapath

Memory

Processor
Input

Output

9/13/07 EECS150 F07 Culler Lec 6 20

Example: Pentium System Organization

Processor/Memory
Bus

PCI Bus

I/O Busses



9/13/07 EECS150 F07 Culler Lec 6 21

Arbitration for the bus…

• Central arbitration shown here
– Used in essentially all processor-memory busses and in high-

speed I/O busses

Bus
Arbiter

Device 1 Device NDevice 2

Grant Req

9/13/07 EECS150 F07 Culler Lec 6 22

Simple Synchronous Protocol

• Even memory busses are more complex than this
– memory (slave) may take time to respond
– it need to control data rate

BReq

BG

Rd+AddrCMD
Address

Data1 Data2Data

I want the bus

nope
You got it

I still want the bus

Mem grabs addr

Proc grabs data

I’m done after this

9/13/07 EECS150 F07 Culler Lec 6 23

Processor Side of Protocol - sketch

• Memory waits?
• Additional outputs?
• Memory side?

Idle

~BR

Request bus

BR

Address

BR,RD, addr_enable

proc read

BG

Data 1

BR, MDR_enable

Data 2

~BR, MDR_enable

~BG

9/13/07 EECS150 F07 Culler Lec 6 24

Simple Synchronous Protocol (cont)

BReq

BG

Rd+AddrCMD
Address

Data1 Data2Data

I want the bus

nope
You got it

I still want the bus

Mem grabs addr

Proc grabs data

I’m done after this

idle req req w-addr r-data1 r-data2 idle



9/13/07 EECS150 F07 Culler Lec 6 25

Announcements
• Reading 8.1-4 (slight change in ordering)
• HW 2 due tomorrow
• HW 3 will go out today
• Lab lecture on Verilog synthesis
• Next week feedback survey
• Input on discussion sections

• Technology in the News
– iPhone “unlocked”
– iPhone price drops by $200

9/13/07 EECS150 F07 Culler Lec 6 26

Fundamental Design Principle

• Divide circuit into combinational logic and state
• Localize feedback loops and make it easy to break 

cycles
• Implementation of storage elements leads to various 

forms of sequential logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

9/13/07 EECS150 F07 Culler Lec 6 27

Forms of Sequential Logic
• Asynchronous sequential logic – “state” changes 

occur whenever state inputs change (elements 
may be simple wires or delay elements)

• Synchronous sequential logic – state changes 
occur in lock step across all storage elements 
(using a periodic waveform - the clock)

Clock
9/13/07 EECS150 F07 Culler Lec 6 28

General Model of Synchronous 
Circuit

• All wires, except clock, may 
be multiple bits wide.

• Registers (reg)
– collections of flip-flops

• clock
– distributed to all flip-flops
– typical rate?

• Combinational Logic Blocks (CL)
– no internal state (no feedback)
– output only a function of inputs

• Particular inputs/outputs are 
optional

• Optional Feedback
• ALL CYCLES GO THROUGH A REG!

reg regCL CL

clock input

output

option feedback

input output



9/13/07 EECS150 F07 Culler Lec 6 29

Composing FSMs into larger designs

CL

FSM FSM

CL

9/13/07 EECS150 F07 Culler Lec 6 30

Composing Moore FSMs

• Synchronous design methodology preserved

CL

Moore Moore

CL

s
t
a
t
e

outputnext

state

s
t
a
t
e

outputnext

state

9/13/07 EECS150 F07 Culler Lec 6 31

Composing Mealy FSMs …

• Synchronous design methodology violated!!!
• Why do designers used them?

– Few states, often more natural in isolation
– Safe if latch all the outputs

» Looks like a mealy machine, but isn’t really
» What happens to the timing?

CL

Mealy FSM

CL
s
t
a
t
e

Output

Next

state

s
t
a
t
e

Output

Next

state

9/13/07 EECS150 F07 Culler Lec 6 32

Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk



9/13/07 EECS150 F07 Culler Lec 6 33

Recall 61C: Single-Cycle MIPS

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

3
1
x

LW
 r3

, 1
7(

r1
)

17

reg[1]
reg[1]+17

M
E

M
[r1

+1
7]

1. Instruction
Fetch

2. Register
Read 3. Execute 4. Memory 5. Reg.

Write

9/13/07 EECS150 F07 Culler Lec 6 34

Recall 61C: 5-cycle Datapath - pipeline

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

3
1
x

LW
 r3

, 1
7(

r1
)

1. Instruction
Fetch

17

reg[1]

2. Register
Read

reg[1]+17

3. Execute

M
E

M
[r1

+1
7]

4. Memory 5. Reg.
Write

IR

9/13/07 EECS150 F07 Culler Lec 6 35

FSM timing

Clock

Inputs

Outputs

State Time
(Clock Period)     

State register propagation delay

Output logic propagation delay

How long must this be?

State (internal)

• What determines min FSM cycle time (max clock rate)?

What determines this?

9/13/07 EECS150 F07 Culler Lec 6 36

Finite State Machines in Verilog

inputs
Moore outputs

Mealy outputs

next state

current state

combinational
logic

combinational
logic



9/13/07 EECS150 F07 Culler Lec 6 37

module Reduce(Out, Clock, Reset, In);
output Out;
input Clock, Reset, In;
reg Out;
reg [1:0] CurrentState; // state register
reg [1:0] NextState;
// State assignment
localparam STATE_Zero = 2’h0,

STATE_One1 = 2’h1,
STATE_Two1s = 2’h2,
STATE_X = 2’hX;

Verilog FSM - Reduce 1s example
• Change the first 1 to 0 in each string of 1’s

– Example Moore machine implementation

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

9/13/07 EECS150 F07 Culler Lec 6 38

always @(In or CurrentState) begin
NextState = CurrentState;
Out = 1’b0;
case (CurrentState)

STATE_Zero: begin // last input was a zero
if (In) NextState = STATE_One1;

end
STATE_One1: begin // we've seen one 1

if (In) NextState = STATE_Two1s;
else NextState = STATE_Zero;

end
STATE_Two1s: begin // we've seen at least 2 ones

Out = 1;
if (~In) NextState = STATE_Zero;

end
default: begin // in case we reach a bad state

Out = 1’bx;
NextState = STATE_X;

end
endcase

end

Moore Verilog FSM: combinational part

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

include all signals 
that are input to state 
and output equations

Compute:  output = G(state)

next state = F(state, in)

9/13/07 EECS150 F07 Culler Lec 6 39

// Implement the state register
always @ (posedge Clock) begin

if (Reset) CurrentState <= STATE_Zero;
else CurrentState <= NextState;

end
endmodule

Moore Verilog FSM: state part

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]Note: posedge Clock requires NONBLOCKING ASSIGNMENT.

Blocking Assignment <-> Combinational Logic

Nonblocking Assignment <-> Sequential Logic (Registers)

9/13/07 EECS150 F07 Culler Lec 6 40

module Reduce(Clock, Reset, In, Out);
input Clock, Reset, In;
output Out;
reg Out;
reg CurrentState; // state register
reg NextState;
localparam STATE_Zero = 1’b0,

STATE_One = 1’b1;
always @(posedge Clock) begin

if (Reset) CurrentState <= STATE_Zero;
else CurrentState <= NextState;

end
always @ (In or CurrentState) begin

NextState = CurrentState;
Out = 1’b0;
case (CurrentState)

zero: if (In) NextState = STATE_One;
one: begin // we've seen one 1

if (In) NextState = STATE_One;
else    NextState = STATE_Zero;
Out = In;

end
endcase

end
endmodule

Mealy Verilog FSM for Reduce-1s 
example

1/00/0

0/0

1/1

zero
[0]

one1
[0]

Note: smaller state machine

Output = G(state, input)



9/13/07 EECS150 F07 Culler Lec 6 41

Restricted FSM Implementation Style
• Mealy machine requires two always blocks

– Register needs posedge Clock block
– Input to output needs combinational block

• Moore machine can be done with one always 
block, but….
– E.g. simple counter
– Very bad idea for general FSMs

» This will cost you hours of confusion, don’t try it
» We will not accept labs with this style for general FSMs

– Use two always blocks!

• Moore outputs
– Share with state register, use suitable state encoding

9/13/07 EECS150 F07 Culler Lec 6 42

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg [1:0] state; // state register
parameter zero = 0, one1 = 1, two1s = 2;

Single-always Moore Machine 
(Not Allowed!)

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

9/13/07 EECS150 F07 Culler Lec 6 43

always @(posedge clk)
case (state)
zero: begin

out <= 0;
if (in) state <= one1;
else    state <= zero;

end
one1:

if (in) begin
state <= two1s;
out <= 1;

end else begin
state <= zero;
out <= 0;

end
two1s:

if (in) begin
state <= two1s;
out <= 1;

end else begin
state <= zero;
out <= 0;

end
default: begin

state <= zero;
out <= 0;

end
endcase

endmodule

This is confusing: the
output does not change
until the next clock cycle

Single-always Moore Machine 
(Not Allowed!)

All outputs are registered

9/13/07 EECS150 F07 Culler Lec 6 44

Finite State Machines
•

• Recommended FSM Verilog implementation style
– Implement combinational logic using one always block
– Implement an explicit state register using a second always 

block

inputs
Moore outputs

Mealy outputs

next state

current state

combinational
logic

combinational
logic



9/13/07 EECS150 F07 Culler Lec 6 45

Summary
• FSMs are critical tool in your design toolbox

– Adapters, Protocols, Datapath Controllers, …

• They often interact with other FSMs
• Important to design each well and to make them 

work together well.
• Keep your verilog FSMs clean

– Separate combinational part from state update

• Good state machine design is an iterative process


