
EECS 150 - Components and Design
Techniques for Digital Systems

 FSMs
9/11/2007

Sarah Bird
Electrical Engineering and Computer Sciences
University of California, Berkeley

Slides borrowed from David Culler Fa04 and
Randy Katz Sp07

CS 150 - Fall 2007 – Moore and Mealy Machines - 2

Sequential Logic Implementation

 Models for representing sequential circuits
 Finite-state machines (Moore and Mealy)
 Representation of memory (states)
 Changes in state (transitions)

 Design procedure
 State diagrams
 State transition table
 Next state functions

CS 150 - Fall 2007 – Moore and Mealy Machines - 3

Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk

CS 150 - Fall 2007 – Moore and Mealy Machines - 4

Abstraction of State Elements

 Divide circuit into combinational logic and state
 Localize feedback loops and make it easy to break cycles
 Implementation of storage elements leads to various

forms of sequential logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

CS 150 - Fall 2007 – Moore and Mealy Machines - 5

Forms of Sequential Logic

 Asynchronous sequential logic – state changes occur
whenever state inputs change (elements may be simple
wires or delay elements)

 Synchronous sequential logic – state changes occur in
lock step across all storage elements (using a periodic
waveform - the clock)

Clock

CS 150 - Fall 2007 – Moore and Mealy Machines - 6

In = 0

In = 1

In = 0In = 1

100

010

110

111001

Finite State Machine Representations

 States: determined by possible values in sequential
storage elements

 Transitions: change of state
 Clock: controls when state can change by controlling

storage elements

 Sequential Logic
 Sequences through a series of states
 Based on sequence of values on input signals
 Clock period defines elements of sequence

CS 150 - Fall 2007 – Moore and Mealy Machines - 7

Can Any Sequential System be
Represented with a State Diagram?

 Shift Register
 Input value shown

on transition arcs
 Output values shown

within state node

100 110

111

011

101010000

001

0

1

1 1

11

1

1

0

0

0

0 0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

CS 150 - Fall 2007 – Moore and Mealy Machines - 8

Two Kinds of FSMs
 Moore Machine vs Mealy Machine

Combinational

Logic
state

state(t+1) = F (state(t), input)

Output (t) =

 G(state(t), Input)

Input

state

state(t+1) = F (state(t), input(t))

Output (t) = G(state(t))
Input

State / out Input State Input / Out

CS 150 - Fall 2007 – Moore and Mealy Machines - 9

010

100

110

011001

000

101111

3-bit up-counter

Counters are Simple Finite State Machines

 Counters
 Proceed thru well-defined state sequence in response to enable

 Many types of counters: binary, BCD, Gray-code
 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

CS 150 - Fall 2007 – Moore and Mealy Machines - 10

Verilog Upcounter

module binary_cntr (q, clk)
 inputs clk;
 outputs [2:0] q;
 reg [2:0] q;
 reg [2:0] p;

 always @(q) //Calculate next state
 case (q)
 3’b000: p = 3’b001;
 3’b001: p = 3’b010;
 …
 3’b111: p = 3’b000;
 endcase

 always @(posedge clk) //next becomes current state
 q <= p;

endmodule

CS 150 - Fall 2007 – Moore and Mealy Machines - 11

How Do We Turn a State Diagram into Logic?

 Counter
 Three flip-flops to hold state
 Logic to compute next state
 Clock signal controls when flip-flop memory can change

 Wait long enough for combinational logic to compute new value
 Don't wait too long as that is low performance

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"

CS 150 - Fall 2007 – Moore and Mealy Machines - 12

FSM Design Procedure

 Start with counters
 Simple because output is just state
 Simple because no choice of next state based on input

 State diagram to state transition table
 Tabular form of state diagram
 Like a truth-table

 State encoding
 Decide on representation of states
 For counters it is simple: just its value

 Implementation
 Flip-flop for each state bit
 Combinational logic based on encoding

CS 150 - Fall 2007 – Moore and Mealy Machines - 13

010

100

110

011001

000

101111

3-bit up-counter

current state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4
4 100 101 5
5 101 110 6
6 110 111 7
7 111 000 0

FSM Design Procedure: State Diagram
to Encoded State Transition Table

 Tabular form of state diagram
 Like a truth-table (specify output for all input

combinations)
 Encoding of states: easy for counters – just use value

CS 150 - Fall 2007 – Moore and Mealy Machines - 14

C3 C2 C1 N3 N2 N1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

N1 := C1'
N2 := C1C2' + C1'C2

:= C1 xor C2
N3 := C1C2C3' + C1'C3 + C2'C3

:= C1C2C3' + (C1' + C2')C3
:= (C1C2) xor C3

notation to show
function represent
input to D-FF

Implementation

 D flip-flop for each state bit
 Combinational logic based on encoding

0 0

0 1

1 1

0 1C1

C2

C3N3

0 1

1 0

1 0

0 1C1

C2

C3N2

1 1

0 0

1 1

0 0C1

C2

C3N1

CS 150 - Fall 2007 – Moore and Mealy Machines - 15

Parity Checker FSM

 “State Transition Diagram”
 circuit is in one of two states.
 transition on each cycle with

each new input, over exactly
one arc (edge).

 Output depends on which state
the circuit is in.

Parity

Checker
IN OUT

bit stream
0 if even parity

1 if odd parity

example: 0 0 1 1 1 0 1

 even even odd even odd odd even

CLK

time

CS 150 - Fall 2007 – Moore and Mealy Machines - 16

Formal Design Process
 State Transition Table:

 Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present next
state OUT IN state

 EVEN 0 0 EVEN
 EVEN 0 1 ODD
 ODD 1 0 ODD
 ODD 1 1 EVEN

present state (ps) OUT IN next state (ns)
 0 0 0 0
 0 0 1 1
 1 1 0 1
 1 1 1 0

Derive logic equations
from table (how?):
OUT = PS
NS = PS xor IN

CS 150 - Fall 2007 – Moore and Mealy Machines - 17

Formal Design Process

 Circuit Diagram:

 XOR gate for ns calculation
 DFF to hold present state
 no logic needed for output

Logic equations from
table:
OUT = PS
NS = PS xor IN

nsps

 Review of Design Steps:
1. Circuit functional
specification
2. State Transition Diagram
3. Symbolic State Transition
Table
4. Encoded State Transition
Table
5. Derive Logic Equations
6. Circuit Diagram

FFs for state
CL for NS and OUT

CS 150 - Fall 2007 – Moore and Mealy Machines - 18

Another example
 Door combination lock:

 punch in 3 values in sequence and the door opens; if there
is an error the lock must be reset; once the door opens
the lock must be reset

 inputs: sequence of input values, reset
 outputs: door open/close
 memory: must remember combination

or always have it available as an input

CS 150 - Fall 2007 – Moore and Mealy Machines - 19

closed closedclosed
C1=value

& new
C2=value

& new
C3=value

& new

C1!=value
& new C2!=value

& new
C3!=value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

Sequential example: abstract control
 Finite-state diagram

 States: 5 states
 represent point in execution of machine
 each state has outputs

 Transitions: 6 from state to state, 5 self transitions, 1
global
 changes of state occur when clock says it’s ok
 based on value of inputs

 Inputs: reset, new, results of comparisons
 Output: open/closed

CS 150 - Fall 2007 – Moore and Mealy Machines - 20

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – closed
0 – – OPEN OPEN – open
0 – – ERR ERR – closed

next

Sequential example (cont’d):
finite-state machine
 Finite-state machine

 generate state table (much like a truth-table)
closed

closed
mux=C1

reset equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Symbolic states

Encoding?

CS 150 - Fall 2007 – Moore and Mealy Machines - 21

Sequential example: encoding
 Encode state table

 state can be: S1, S2, S3, OPEN, or ERR
 needs at least 3 bits to encode: 000, 001, 010, 011, 100
 and as many as 5: 00001, 00010, 00100, 01000, 10000
 choose 4 bits: 0001, 0010, 0100, 1000, 0000

 Encode outputs
 output mux can be: C1, C2, or C3

 needs 2 to 3 bits to encode
 choose 3 bits: 001, 010, 100

 output open/closed can be: open or closed
 needs 1 or 2 bits to encode
 choose 1 bits: 1, 0

binary

One-hot

hybrid

CS 150 - Fall 2007 – Moore and Mealy Machines - 22

good choice of encoding!

mux is identical to
last 3 bits of next state

open/closed is
identical to first bit
of state

Sequential example (cont’d):
encoding
 Encode state table

 state can be: S1, S2, S3, OPEN, or ERR
 choose 4 bits: 0001, 0010, 0100, 1000, 0000

 output mux can be: C1, C2, or C3
 choose 3 bits: 001, 010, 100

 output open/closed can be: open or closed
 choose 1 bits: 1, 0

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0
0 1 1 0010 0100 100 0
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1
0 – – 1000 1000 – 1
0 – – 0000 0000 – 0

next

CS 150 - Fall 2007 – Moore and Mealy Machines - 23

State Minimization

 Fewer states may mean fewer state variables
 High-level synthesis may generate many redundant states
 Two state are equivalent if they are impossible to distinguish

from the outputs of the FSM, i. e., for any input sequence the
outputs are the same

 Two conditions for two states to be equivalent:
 1) Output must be the same in both states
 2) Must transition to equivalent states for all input combinations

CS 150 - Fall 2007 – Moore and Mealy Machines - 24

Sequential Logic Implementation Summary

 Models for representing sequential circuits
 Abstraction of sequential elements
 Finite state machines and their state diagrams
 Inputs/outputs
 Mealy, Moore, and synchronous Mealy machines

 Finite state machine design procedure
 Deriving state diagram
 Deriving state transition table
 Determining next state and output functions
 Implementing combinational logic

