EECS 150 - Components and Design
Techniques for Digital Systems

FSMs
9/11/2007

Sarah Bird

Electrical Engineering and Computer Sciences
University of California, Berkeley

Slides borrowed from David Culler Fa04 and
Randy Katz Sp07

Sequential Logic Implementation

I Models for representing sequential circuits
I Finite-state machines (Moore and Mealy)
I Representation of memory (states)
I Changes in state (transitions)

I Design procedure

I State diagrams
I State transition table
I Next state functions

CS 150 - Fall 2007 — Moore and Mealy Machines - 2

Recall: What makes Digital Systems tick?

4 I
— > _»Combinational L 5
> Logic
—p > —
= ——p —
> P
= - ——
Al /
A
clk T
>
time

CS 150 - Fall 2007 — Moore and Mealy Machines - 3

Abstraction of State Elements

I Divide circuit into combinational logic and state

I Localize feedback loops and make it easy to break cycles

I Implementation of storage elements leads to various
forms of sequential logic

>

>
> >
Inputs > Combinational > Outputs
> Logic
—»
—>»
<
State Inputs State Outputs
<
Storage Elements
<

CS 150 - Fall 2007 — Moore and Mealy Machines - 4

Forms of Sequential Logic

I Asynchronous sequential logic - state changes occur
whenever state inputs change (elements may be simple
wires or delay elements)

I Synchronous sequential logic - state changes occur in
lock step across all storage elements (using a periodic
waveform - the clock)

\A A4

< > <

> > <

> >

—> —>
—> —>
< —>

Clock

CS 150 - Fall 2007 — Moore and Mealy Machines - 5

Finite State Machine Representations

I States: determined by possible values in sequential

storage elements
I Transitions: change of state
I Clock: controls when state can change by controlling

storage elements

I Sequential Logic
I Sequences through a series of states
I Based on sequence of values on input signals
I Clock period defines elements of sequence

CS 150 - Fall 2007 — Moore and Mealy Machines - 6

Can Any Sequential System be
Represented with a State Diagram?

I Shift Register

OUT1 OUT2 OuUT3
I Input value shown
oh transition arcs
——D . D | D |
I Output values shown N /\Q /\Q /\Q
within state node CLK I [|
100 1 110
0 1
z 1
(o) o (o0) (o) o ()
0 0 0 1 0
001 5 011

CS 150 - Fall 2007 — Moore and Mealy Machines - 7

Two Kinds of FSMs

I Moore Machine VS Mealy Machine

Output (t) =

Output (t) = G(state(t)) G(state(t), Input)

Input h
{ > Input _>/ \—b
>)
J
—> 0 > ” L]
) > : £ >Combmatlonal 4E
> > » P —p Logic
A A
1 Y T y
state(t+1) = F (state(t), input(t)) state(t+1) = F (state(t), input)

T

CS 150 - Fall 2007 — Moore and Mealy Machines - 8

Counters are Simple Finite State Machines

i Counters
I Proceed thru well-defined state sequence in response to enable

I Many types of counters: binary, BCD, Gray-code
I 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 00O, ...
I 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

@ 3-bit up-counter @
(e

CS 150 - Fall 2007 — Moore and Mealy Machines - 9

Verilog Upcounter

module binary cntr (g, clk)

inputs clk;

outputs [2:0] g;

reg [2:0] q;

reg [2:0] p;

always @ (q) //Calculate next state
case (q)

3’b000: p = 3'b001;
3’b001: p = 3'b010;

3"bl111: p = 3"b000;
endcase

always @ (posedge clk) //next becomes current state
q <= p;

endmodule

CS 150 - Fall 2007 — Moore and Mealy Machines - 10

How Do We Turn a State Diagram into Logic?

I Counter
I Three flip-flops to hold state
I Logic to compute next state

I Clock signal controls when flip-flop memory can change
| Wait long enough for combinational logic to compute new value
| Don't wait too long as that is low performance

OUT1 OouT2 OuUT3

a

A

Illll

DQH [PQFt (P QM
=il \

CS 150 - Fall 2007 — Moore and Mealy Machines - 11

FSM Design Procedure

i Start with counters
I Simple because output is just state
I Simple because no choice of next state based on input

I State diagram to state transition table
I Tabular form of state diagram
I Like a truth-table

I State encoding
I Decide on representation of states
I For counters it is simple: just its value

I Implementation
I Flip-flop for each state bit
I Combinational logic based on encoding

CS 150 - Fall 2007 — Moore and Mealy Machines - 12

FSM Design Procedure: State Diagram
to Encoded State Transition Table

I Tabular form of state diagram

I Like a truth-table (specify output for all input
combinations)

I Encoding of states: easy for counters - just use value

current state next state

@ @ @ 0 | 000 001 | 1
1 | 001 010 | 2

2 | 010 011 | 3

3-bit up-counter @ 3 | 011 100 | 4

4 | 100 101 | 5

+«——(110«——(10) 5 | 101 110 | 6

6 | 110 111 | 7

7 | 111 000 | O

CS 150 - Fall 2007 — Moore and Mealy Machines - 13

Implementation

I D flip-flop for each state bit

I Combinational logic based on encoding

N3

C1

notation to show
function represent

C3 C2 C1|N3 N2 NI input to D-FF
0o 0 0 |0 o 1
0 0 1 |o 1 o N1 := C1'
0o 1 0 |o 1 1 N2 i= C1C2' + C1'C2
= C1 xor C2

O L N3 = E1c§c3c' + CI'C3 + C2'C3
1 0o o1 0 1 .= C1C2C3' + (C1' + C2')C3
1 0 1 |1 1 O = (C1C2) xor C3
1 1 0 |1 1 1
1 1 t o o o

C3 N2 C3 N1 C3

T Gl

cf 1] o o[1] cill o | o] o] o

C2 C2
CS 150 - Fall 2007 — Moore and Mealy Machines - 14

Parity Checker FSM

: IN Parity outr O if even parity
bit stream Checker 1 if odd parity

CLK—»
example: 0 0 1 1 1 0 1
even even odd even odd odd
IN
time
I "State Transition Diagram” IN=1 -1

I circuit is in one of two states.

I transition on each cycle with
each new input, over exactly
one arc (edge).

I Output depends on which state IN=0
the circuit is in.

CS 150 - Fall 2007 — Moore and Mealy Machines - 15

Formal Design Process
I State Transition Table:

present next
state OUT|IN | state @
EVEN EVEN

IN=0

010 IN=1 .
EVEN O |1] ODD)
ODD 1 |0 | ODD
obD | 1 |1 | EVEN -
OUT=1
I Invent a code to represent states: N
Let O = EVEN state, 1= ODD state =0
present state (ps) [OUT [IN hext state (ns) Derive logic equations
0 0 |0 0 from table (how?):
? (13 (1) 1 OUT =PS
1 111 0 NS = PS xor IN

CS 150 - Fall 2007 — Moore and Mealy Machines - 16

Formal Design Process
Logic equations from
table: I Review of Design Steps:

OUT = Ps 1. Circuit functional

NS = PS xor IN O
specification
I Circuit Diagram: 2. State Transition Diagram
& éi N 3. Symbolic State Transition
Table
A 4. Encoded State Transition
t L FF | Table
Y ook 5. Derive Logic Equations
ouT

6. Circuit Diagram

I XOR gate for ns calculation
I DFF to hold present state FFs for state

I no logic needed for output
CL for NS and OUT

CS 150 - Fall 2007 — Moore and Mealy Machines - 17

Another example

I Door combination lock:

I punch in 3 values in sequence and the door opens; if there
is an error the lock must be reset; once the door opens
the lock must be reset

I inputs: sequence of input values, reset
I outputs: door open/close

I memory: must remember combination
or always have it available as an input

CS 150 - Fall 2007 — Moore and Mealy Machines - 18

Sequential example: abstract control

I Finite-state diagram

I States: D states
| represent point in execution of machine
| each state has outputs

I Transitions: 6 from state to state, 5 self transitions, 1

global

| changes of state occur when clock says it's ok l
| based on value of inputs

I Inputs: reset, new, results of comparison

: Cl!=value
I Output: open/closed e

C3=value
& new

C2=value
& new

Cl=value
& new

il il il

not new not new not new

CS 150 - Fall 2007 — Moore and Mealy Machines - 19

Sequential example (cont'd):

finite-state machine
I Finite-state machine

I generate state table (much like a truth-table)

Symbolic states

not equal
& new

not new not new not new

next
reset hew equal state | state mux open/closed
1 - - - Sl Cl1 closed
0 0 - S1 Si Cl closed
0 1 0 S1 ERR - closed
0 1 1 S1 S2 ce2 closed
0 0 - S2 S2 c2 closed
0 1 0 S2 ERR - closed Encoding?
0 1 1 S2 S3 C3 closed
0 0 - S3 S3 C3 closed
0 1 0 S3 ERR - closed
0 1 1 S3 OPEN - closed
0 - - OPEN| OPEN - open
0 - - ERR ERR - closed

CS 150 - Fall 2007 — Moore and Mealy Machines - 20

Sequential example: encoding

I Encode state table binary

I state can be: S1, S2, S3, OPEN, or ERR /
| needs at least 3 bits to encode: 000, 001, 010, 011, 100
| and as many as 5: 00001, 00010, 00100, 01000, 10000

| choose 4 bits: 0001, 0010, 0100, 1000, 000 ™ One-hot
I Encode outputs

I output mux can be: C1, C2, or C3 hybrid
| needs 2 to 3 bits to encode
| choose 3 bits: 001, 010, 100

I output open/closed can be: open or closed
| needs 1or 2 bits to encode
| choose 1bits: 1,0

CS 150 - Fall 2007 — Moore and Mealy Machines - 21

Sequential example (cont'd):

encoding

I Encode state table

I state can be: S1, S2, S3, OPEN, or ERR

| choose 4 bits: 0001, 0010, 0100, 1000, 0000
I output mux can be: C1, C2, or C3
| choose 3 bits: 001, 010, 100
I output open/closed can be: open or closed
| choose 1 bits: 1,0

good choice of encoding!

mux is identical to
last 3 bits of next state

open/closed is
identical to first bit
of state

next

reset new equal state | state mux open/closed
1 - - - o001 oot o0
0 0) - 0001 | 0001 ; 001 0)
0 1 0) 0001 | 0000 ' - 0)
"0 1 1 0001 | 0010 | 010 0)
' 0 0] - 0010 | 0010 | 010 0)
0 1 0 0010 | 0000 ' - 0
0 1 1 0010 | 0100 : 100 0)
0 o - 0100 | 0100 ' 100 0)
o) 1 0) 0100 | 0000 : - 0)
0 1 1 0100 | 1000 ! - 1
o - - 1000 | 1000 - 1
0) - - 0000 | 0000 - 0)

CS 150 - Fall 2007 — Moore and Mealy Machines - 22

State Minimization

I Fewer states may mean fewer state variables
I High-level synthesis may generate many redundant states

I Two state are equivalent if they are impossible to distinguish
from the outputs of the FSM, i. e, for any input sequence the
outputs are the same

I Two conditions for two states to be equivalent:
I 1) Output must be the same in both states
I 2) Must transition to equivalent states for all input combinations

CS 150 - Fall 2007 — Moore and Mealy Machines - 23

Sequential Logic Implementation Summary

I Models for representing sequential circuits
I Abstraction of sequential elements
I Finite state machines and their state diagrams
I Inputs/outputs
I Mealy, Moore, and synchronous Mealy machines

I Finite state machine design procedure
I Deriving state diagram
I Deriving state transition table
I Determining next state and output functions
I Implementing combinational logic

CS 150 - Fall 2007 — Moore and Mealy Machines - 24

