
© UC Berkeley

EECS 150 - Components and Design
Techniques for Digital Systems

Lec 04 – Hardware Description
Languages / Verilog

9/6/2007
David Culler

Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

9/6/2007 EECS 150, Fa07, Lec 04-HDL 2© UC Berkeley

Review
• Advancing technology changes the trade-offs

and design techniques
– 2x transistors per chip every 18 months

• ASIC, Programmable Logic, Microprocessor
• Programmable logic invests chip real-estate to

reduce design time & time to market
– Canonical Forms, Logic Minimization, PLAs,

• FPGA:
– programmable interconnect,
– configurable logic blocks

» LUT + storage
– Block RAM
– IO Blocks

9/6/2007 EECS 150, Fa07, Lec 04-HDL 3© UC Berkeley

Outline
• Netlists
• Design flow
• What is a HDL?
• Verilog
• Announcements
• Structural models
• Behavioral models
• Elements of the language
• Lots of examples

9/6/2007 EECS 150, Fa07, Lec 04-HDL 4© UC Berkeley

Remember: to design is to represent

• How do we represent digital designs?
• Components

– Logic symbol, truth table
– Storage symbol, timing diagram

• Connections
– Schematics

Human readable or machine readable???

9/6/2007 EECS 150, Fa07, Lec 04-HDL 5© UC Berkeley

Design Flow

Design
Entry

High-level
Analysis

Technology
Mapping

Low-level
Analysis

9/6/2007 EECS 150, Fa07, Lec 04-HDL 6© UC Berkeley

Netlist
• A key data structure (or

representation) in the design
process is the “netlist”:

– Network List

• A netlist lists components and
connects them with nodes:

ex:

g1 "and" n1 n2 n5
g2 "and" n3 n4 n6
g3 "or" n5 n6 n7

Alternative format:
n1 g1.in1
n2 g1.in2
n3 g2.in1
n4 g2.in2
n5 g1.out g3.in1
n6 g2.out g3.in2
n7 g3.out
g1 "and"
g2 "and"
g3 "or"

n1
n2
n3
n4

n5

n6

n7

• Netlist is needed for simulation and
implementation.

• Could be at the transistor level, gate
level, ...

• Could be hierarchical or flat.
• How do we generate a netlist?

g1

g2
g3

9/6/2007 EECS 150, Fa07, Lec 04-HDL 7© UC Berkeley

Design Flow

• Circuit is described and
represented:

– Graphically (Schematics)
– Textually (HDL)

• Result of circuit specification
(and compilation) is a netlist
of:

– generic primitives - logic gates,
flip-flops, or

– technology specific primitives -
LUTs/CLBs, transistors, discrete
gates, or

– higher level library elements -
adders, ALUs, register files,
decoders, etc.

Design
Entry

High-level
Analysis

Technology
Mapping

Low-level
Analysis

9/6/2007 EECS 150, Fa07, Lec 04-HDL 8© UC Berkeley

Design Flow

• High-level Analysis is used to
verify:

– correct function
– rough:

» timing
» power
» cost

• Common tools used are:
– simulator - check functional

correctness, and
– static timing analyzer

» estimates circuit delays based on
timing model and delay
parameters for library elements
(or primitives).

Design
Entry

High-level
Analysis

Technology
Mapping

Low-level
Analysis

9/6/2007 EECS 150, Fa07, Lec 04-HDL 9© UC Berkeley

Design Flow

• Technology Mapping:
– Converts netlist to implementation

technology dependent details
» Expands library elements,
» performs:

• partitioning,
• placement,
• routing

• Low-level Analysis
– Simulation and Analysis Tools

perform low-level checks with:
» accurate timing models,
» wire delay

– For FPGAs this step could also
use the actual device.

Design
Entry

High-level
Analysis

Technology
Mapping

Low-level
Analysis

9/6/2007 EECS 150, Fa07, Lec 04-HDL 10© UC Berkeley

Design Flow

Netlist:
used between and
internally for all steps.

Design
Entry

High-level
Analysis

Technology
Mapping

Low-level
Analysis

9/6/2007 EECS 150, Fa07, Lec 04-HDL 11© UC Berkeley

Design Entry
• Schematic entry/editing used

to be the standard method in
industry

• Used in EECS150 until
recently

☺ Schematics are intuitive. They
match our use of gate-level or
block diagrams.

☺ Somewhat physical. They
imply a physical
implementation.
Require a special tool (editor).
Unless hierarchy is carefully
designed, schematics can be
confusing and difficult to
follow.

• Hardware Description
Languages (HDLs) are the new
standard

– except for PC board design, where
schematics are still used.

9/6/2007 EECS 150, Fa07, Lec 04-HDL 12© UC Berkeley

HDLs
• Basic Idea:

– Language constructs describe circuits
with two basic forms:

– Structural descriptions similar to
hierarchical netlist.

– Behavioral descriptions use higher-
level constructs (similar to
conventional programming).

• Originally designed to help in
abstraction and simulation.

– Now “logic synthesis” tools exist to
automatically convert from behavioral
descriptions to gate netlist.

– Greatly improves designer productivity.
– However, this may lead you to falsely

believe that hardware design can be
reduced to writing programs!

• “Structural” example:
Decoder(output x0,x1,x2,x3;

inputs a,b)
{

wire abar, bbar;
inv(bbar, b);
inv(abar, a);
nand(x0, abar, bbar);
nand(x1, abar, b);
nand(x2, a, bbar);
nand(x3, a, b);

}
• “Behavioral” example:

Decoder(output x0,x1,x2,x3;
inputs a,b)

{
case [a b]

00: [x0 x1 x2 x3] = 0x0;
01: [x0 x1 x2 x3] = 0x2;
10: [x0 x1 x2 x3] = 0x4;
11: [x0 x1 x2 x3] = 0x8;

endcase;
}

9/6/2007 EECS 150, Fa07, Lec 04-HDL 13© UC Berkeley

Design Methodology

HDL
Specification

Structure and Function
(Behavior) of a Design

Simulation

Verification: Design
Behave as Required?

Functional: I/O Behavior
Register-Level (Architectural)

Logic-Level (Gates)
Transistor-Level (Electrical)
Timing: Waveform Behavior

Synthesis

Generation: Map
Specification to
Implementation

9/6/2007 EECS 150, Fa07, Lec 04-HDL 14© UC Berkeley

Quick History of HDLs
• ISP (circa 1977) - research project at CMU

– Simulation, but no synthesis

• Abel (circa 1983) - developed by Data-I/O
– Targeted to programmable logic devices
– Not good for much more than state machines

• Verilog (circa 1985) - developed by Gateway (now Cadence)
– Similar to Pascal and C, originally developed for simulation
– Fairly efficient and easy to write
– 80s Berkeley develops synthesis tools
– IEEE standard

• VHDL (circa 1987) - DoD sponsored standard
– Similar to Ada (emphasis on re-use and maintainability)
– Simulation semantics visible
– Very general but verbose
– IEEE standard

9/6/2007 EECS 150, Fa07, Lec 04-HDL 15© UC Berkeley

Verilog
• Supports structural and behavioral descriptions
• Structural

– Explicit structure of the circuit
– How a module is composed as an interconnection of more

primitive modules/components
– E.g., each logic gate instantiated and connected to others

• Behavioral
– Program describes input/output behavior of circuit
– Many structural implementations could have same behavior
– E.g., different implementations of one Boolean function

9/6/2007 EECS 150, Fa07, Lec 04-HDL 16© UC Berkeley

Verilog Introduction
• the module describes a component in the circuit
• Two ways to describe:

– Structural Verilog
» List of components and how they are connected
» Just like schematics, but using text

• A net list

» tedious to write, hard to decode
» Essential without integrated design tools

– Behavioral Verilog
» Describe what a component does, not how it does it
» Synthesized into a circuit that has this behavior
» Result is only as good as the tools

• Build up a hierarchy of modules

9/6/2007 EECS 150, Fa07, Lec 04-HDL 17© UC Berkeley

module xor_gate (out, a, b);
input a, b;
output out;
wire abar, bbar, t1, t2;
inverter invA (abar, a);
inverter invB (bbar, b);
and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate or1 (out, t1, t2);

endmodule

Structural Model - XOR

– Composition of primitive gates to form more complex module
– Note use of wire declaration!

By default, identifiers are wires

Instance name

port list

module name

declarations

statements
Built-in gates

interconnections

invA

invB

A

B

outand1

and2

or1

t1

t2

9/6/2007 EECS 150, Fa07, Lec 04-HDL 18© UC Berkeley

Structural Model: 2-to1 mux
//2-input multiplexor in gates
module mux2 (in0, in1, select, out);

input in0,in1,select;
output out;
wire s0,w0,w1;

not (s0, select);
and (w0, s0, in0),

(w1, select, in1);
or (out, w0, w1);

endmodule // mux2

• Notes:
– comments
– “module”
– port list
– declarations
– wire type
– primitive gates
– Instance names?
– List per type

out
select

in0

in1

s0

w0

w1

9/6/2007 EECS 150, Fa07, Lec 04-HDL 19© UC Berkeley

module and_gate (out, in1, in2);
input in1, in2;
output out;

assign out = in1 & in2;

endmodule

Simple Behavioral Model
• Combinational logic

– Describe output as a function of inputs
– Note use of assign keyword: continuous assignment

Output port of a primitive must
be first in the list of ports

Restriction does not apply to
modules in general

When is this “evaluated”?

9/6/2007 EECS 150, Fa07, Lec 04-HDL 20© UC Berkeley

2-to-1 mux behavioral description

// Behavioral model of 2-to-1
// multiplexor.
module mux2 (in0,in1,select,out);

input in0,in1,select;
output out;
//
reg out;
always @ (in0 or in1 or select)
if (select) out=in1;
else out=in0;

endmodule // mux2

• Notes:
– behavioral descriptions using

keyword always followed by
blocking procedural assignments

– Target output of procedural
assignments must of of type reg
(not a real register)

– Unlike wire types where the
target output of an assignment
may be continuously updated, a
reg type retains it value until a
new value is assigned (the
assigning statement is executed).

– Optional initial statement

Sensitivity list

9/6/2007 EECS 150, Fa07, Lec 04-HDL 21© UC Berkeley

Behavioral 4-to1 mux
//Does not assume that we have
// defined a 2-input mux.
//4-input mux behavioral description
module mux4 (in0, in1, in2, in3, select, out);

input in0,in1,in2,in3;
input [1:0] select;
output out;
reg out;
always @ (in0 in1 in2 in3 select)

case (select)
2’b00: out=in0;
2’b01: out=in1;
2’b10: out=in2;
2’b11: out=in3;

endcase
endmodule // mux4

• Notes:
– No instantiation
– Case construct equivalent to

nested if constructs.

– Definition: A structural
description is one where the
function of the module is defined
by the instantiation and
interconnection of sub-modules.

– A behavioral description uses
higher level language constructs
and operators.

– Verilog allows modules to mix
both behavioral constructs and
sub-module instantiation.

9/6/2007 EECS 150, Fa07, Lec 04-HDL 22© UC Berkeley

Mixed Structural/Behavioral Model
• Example 4-bit ripple adder

module full_addr (S, Cout, A, B, Cin);
input A, B, Cin;
output S, Cout;
assign {Cout, S} = A + B + Cin;

endmodule

module adder4 (S, Cout, A, B, Cin);
input [3:0] A, B;
input Cin;
output [3:0] S;
output Cout;
wire C1, C2, C3;

full_addr fa0 (S[0], C1, A[0], B[0], Cin);
full_addr fa1 (S[1], C2, A[1], B[1], C1);
full_addr fa2 (S[2], C3, A[2], B[2], C2);
full_addr fa3 (S[3], Cout, A[3], B[3], C3);

endmodule

Behavior

Structural

Order of ports?

9/6/2007 EECS 150, Fa07, Lec 04-HDL 23© UC Berkeley

Announcements
Office hours will be posted on schedule.php
Homework 1 due tomorrow (2 pm outside 125)
Homework 2 out today
Feedback on labs, Lab lectures

Reading:
- these notes
- verilog code you see in lab

9/6/2007 EECS 150, Fa07, Lec 04-HDL 24© UC Berkeley

Verilog Help
• The lecture notes only cover the basics of Verilog and

mostly the conceptual issues.
– Lab Lectures have more detail focused on lab material

• Textbook has examples.
• Bhasker book is a good tutorial.
• http://www.doe.carleton.ca/~shams/97350/PetervrlK.pdf pretty

good
• The complete language specification from the IEEE is

available on the class website under “Refs/Links”
• http://toolbox.xilinx.com/docsan/xilinx4/data/docs/xst/verilog2.html

9/6/2007 EECS 150, Fa07, Lec 04-HDL 25© UC Berkeley

Verilog Data Types and Values
• Bits - value on a wire

– 0, 1
– X - don’t care/don’t know
– Z - undriven, tri-state

• Vectors of bits
– A[3:0] - vector of 4 bits: A[3], A[2], A[1], A[0]
– Treated as an unsigned integer value

» e.g. , A < 0 ??
– Concatenating bits/vectors into a vector

» e.g., sign extend
» B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
» B[7:0] = {3{A[3]}, A[3:0]};

– Style: Use a[7:0] = b[7:0] + c;
Not: a = b + c; // need to look at declaration

9/6/2007 EECS 150, Fa07, Lec 04-HDL 26© UC Berkeley

Verilog Numbers
• 14 - ordinary decimal number
• -14 - 2’s complement representation
• 12’b0000_0100_0110 - binary number with 12

bits (_ is ignored)
• 12’h046 - hexadecimal number with 12 bits
• Verilog values are unsigned

– e.g., C[4:0] = A[3:0] + B[3:0];
– if A = 0110 (6) and B = 1010(-6)

C = 10000 not 00000
i.e., B is zero-padded, not sign-extended

9/6/2007 EECS 150, Fa07, Lec 04-HDL 27© UC Berkeley

Verilog Operators

9/6/2007 EECS 150, Fa07, Lec 04-HDL 28© UC Berkeley

Verilog Variables

• wire
– Variable used simply to connect components together

• reg
– Variable that saves a value as part of a behavioral description
– Usually corresponds to a wire in the circuit
– Is NOT necessarily a register in the circuit

• usage:
– Don’t confuse reg assignments with the combinational continuous

assign statement! (more soon)
– Reg should only be used with always blocks (sequential logic, to

be presented …)

9/6/2007 EECS 150, Fa07, Lec 04-HDL 29© UC Berkeley

Verilog Module

• Corresponds to a circuit component
– “Parameter list” is the list of external connections, aka “ports”
– Ports are declared “input”, “output” or “inout”

» inout ports used on tri-state buses
– Port declarations imply that the variables are wires

module full_addr (A, B, Cin, S, Cout);
input A, B, Cin;
output S, Cout;
assign {Cout, S} = A + B + Cin;

endmodule

module name

inputs/outputs

ports

A B Cin

SCout

9/6/2007 EECS 150, Fa07, Lec 04-HDL 30© UC Berkeley

assign A = X | (Y & ~Z);
assign B[3:0] = 4'b01XX;
assign C[15:0] = 4'h00ff;
assign #3 {Cout, S[3:0]} = A[3:0] + B[3:0] + Cin;

use of arithmetic operator

multiple assignment (concatenation)

delay of performing computation, only used by simulator, not synthesis

use of Boolean operators
(~ for bit-wise, ! for logical negation)

bits can take on four values
(0, 1, X, Z)

variables can be n-bits wide
(MSB:LSB)

Verilog Continuous Assignment
• Assignment is continuously evaluated
• assign corresponds to a connection or a simple

component with the described function
• Target is NEVER a reg variable
• Dataflow style

9/6/2007 EECS 150, Fa07, Lec 04-HDL 31© UC Berkeley

module Compare1 (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;

assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);

endmodule

Comparator Example

When evaluated?

What is synthesized?

9/6/2007 EECS 150, Fa07, Lec 04-HDL 32© UC Berkeley

// Make a 4-bit comparator from 4 1-bit comparators
module Compare4(A4, B4, Equal, Alarger, Blarger);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, e1, e2, e3, Al0, Al1, Al2, Al3, B10, Bl1, Bl2, Bl3;
Compare1 cp0(A4[0], B4[0], e0, Al0, Bl0);
Compare1 cp1(A4[1], B4[1], e1, Al1, Bl1);
Compare1 cp2(A4[2], B4[2], e2, Al2, Bl2);
Compare1 cp3(A4[3], B4[3], e3, Al3, Bl3);
assign Equal = (e0 & e1 & e2 & e3);
assign Alarger = (Al3 | (Al2 & e3) |

(Al1 & e3 & e2) |
(Al0 & e3 & e2 & e1));

assign Blarger = (~Alarger & ~Equal);
endmodule

Comparator Example

What would be a “better” behavioral version?

9/6/2007 EECS 150, Fa07, Lec 04-HDL 33© UC Berkeley

module and_gate (out, in1, in2);
input in1, in2;
output out;
reg out;

always @(in1 or in2) begin
out = in1 & in2;

end
endmodule

Simple Behavioral Model - the always
block

• always block
– Always waiting for a change to a trigger signal
– Then executes the body

Not a real register!!
A Verilog register
Needed because of
assignment in always
block

Specifies when block is executed
I.e., triggered by which signals

9/6/2007 EECS 150, Fa07, Lec 04-HDL 34© UC Berkeley

always Block
• A procedure that describes the function of a

circuit
– Can contain many statements including if, for, while, case
– Statements in the always block are executed sequentially

» “blocking” assignment
» Continuous assignments <= are executed in parallel

• Non-blocking

– The entire block is executed ‘at once’
» But the meaning is established by sequential interpretation

• Simulation micro time vs macro time
• synthesis

– The final result describes the function of the circuit for current
set of inputs

» intermediate assignments don’t matter, only the final result

• begin/end used to group statements

9/6/2007 EECS 150, Fa07, Lec 04-HDL 35© UC Berkeley

What Verilog generates storage elements?

• Expressions produce combinational logic
– Map inputs to outputs

• Storage elements carries same values forward in
time

9/6/2007 EECS 150, Fa07, Lec 04-HDL 36© UC Berkeley

State Example

• Block interpreted sequentially, but action happens “at once”

module shifter (in, A,B,C,clk);
input in, clk;
input A,B,C;
reg A, B, C;
always @ (posedge clk) begin

C = B;
B = A;
A = in;

end
endmodule

A B C

clk

in

9/6/2007 EECS 150, Fa07, Lec 04-HDL 37© UC Berkeley

State Example2 – Non blocking

• Non-blocking: all statements interpreted in parallel
– Everything on the RHS evaluated,
– Then all assignments performed

module shifter (in, A,B,C,clk);
input in, clk;
input A,B,C;
reg A, B, C;
always @ (posedge clk) begin

B <= A;
A <= in;
C <= B;

end
endmodule

A B C

clk

in

9/6/2007 EECS 150, Fa07, Lec 04-HDL 38© UC Berkeley

State Example2 – interactive quiz

• Variable becomes a
storage element if its
value is preserved
(carried forward in time)
despite changes in
variables the produce it.

• Not whether it is declared
as a wire or a reg!

module shifter (in, A,B,C,clk);
input in, clk;
input A,B,C;
reg A, B, C;
always @ (posedge clk) begin

A = in;
B = A;
C = B;

end
endmodule B

C
clk

Ain

9/6/2007 EECS 150, Fa07, Lec 04-HDL 39© UC Berkeley

“Complete” Assignments
• If an always block executes, and a variable is

not assigned
– Variable keeps its old value (think implicit state!)
– NOT combinational logic ⇒ latch is inserted (implied

memory)
– This is usually not what you want: dangerous for the novice!

• Any variable assigned in an always block should
be assigned for any (and every!) execution of the
block.

9/6/2007 EECS 150, Fa07, Lec 04-HDL 40© UC Berkeley

module and_gate (out, in1, in2);
input in1, in2;
output out;
reg out;

always @(in1) begin
out = in1 & in2;

end

endmodule

Incomplete Triggers
• Leaving out an input trigger usually results in a

sequential circuit
• Example: The output of this “and” gate depends

on the input history

What Hardware would this
generate?

9/6/2007 EECS 150, Fa07, Lec 04-HDL 41© UC Berkeley

Behavioral with Bit Vectors

• Notes:
– inputs, outputs 32-bits wide

//Behavioral model of 32-bitwide 2-to-1 multiplexor.
module mux32 (in0,in1,select,out);

input [31:0] in0,in1;
input select;
output [31:0] out;
//
reg [31:0] out;
always @ (in0 or in1 or select)
if (select) out=in1;
else out=in0;

endmodule // Mux
//Behavioral model of 32-bit adder.
module add32 (S,A,B);

input [31:0] A,B;
output [31:0] S;
reg [31:0] S;
always @ (A or B)
S = A + B;

endmodule // Add
9/6/2007 EECS 150, Fa07, Lec 04-HDL 42© UC Berkeley

Hierarchy & Bit Vectors
//Assuming we have already
// defined a 2-input mux (either
// structurally or behaviorally,
//4-input mux built from 3 2-input muxes
module mux4 (in0, in1, in2, in3, select, out);

input in0,in1,in2,in3;
input [1:0] select;
output out;
wire w0,w1;
mux2
m0 (.select(select[0]), .in0(in0), .in1(in1), .out(w0)),
m1 (.select(select[0]), .in0(in2), .in1(in3), .out(w1)),
m3 (.select(select[1]), .in0(w0), .in1(w1), .out(out));

endmodule // mux4

• Notes:
– instantiation similar to primitives
– select is 2-bits wide
– named port assignment

Which select?

9/6/2007 EECS 150, Fa07, Lec 04-HDL 43© UC Berkeley

Verilog if
• Same syntax as C if statement
• Sequential meaning, action “at once”

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment
always @(sel or A or B or C or D)
if (sel == 2’b00) Y = A;
else if (sel == 2’b01) Y = B;
else if (sel == 2’b10) Y = C;
else if (sel == 2’b11) Y = D;

endmodule
9/6/2007 EECS 150, Fa07, Lec 04-HDL 44© UC Berkeley

Verilog if
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment
always @(sel or A or B or C or D)
if (sel[0] == 0)
if (sel[1] == 0) Y = A;
else Y = B;

else
if (sel[1] == 0) Y = C;
else Y = D;

endmodule

9/6/2007 EECS 150, Fa07, Lec 04-HDL 45© UC Berkeley

Verilog case
• Sequential execution of cases

– Only first case that matches is executed (no break)
– Default case can be used

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment
always @(sel or A or B or C or D)

case (sel)
2’b00: Y = A;
2’b01: Y = B;
2’b10: Y = C;
2’b11: Y = D;

endcase
endmodule

Conditions tested in
top to bottom order

9/6/2007 EECS 150, Fa07, Lec 04-HDL 46© UC Berkeley

Verilog case
• Without the default case, this example would create a latch for Y!

– your generating hardware, not programming
• Assigning X to a variable means synthesis is free to assign any

value
// Simple binary encoder (input is 1-hot)
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (A)
8’b00000001: Y = 0;
8’b00000010: Y = 1;
8’b00000100: Y = 2;
8’b00001000: Y = 3;
8’b00010000: Y = 4;
8’b00100000: Y = 5;
8’b01000000: Y = 6;
8’b10000000: Y = 7;
default: Y = 3’bX; // Don’t care when input is not 1-hot

endcase
endmodule

9/6/2007 EECS 150, Fa07, Lec 04-HDL 47© UC Berkeley

Verilog case (cont)

• Cases are executed sequentially
– The following implements a priority encoder

// Priority encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (1’b1)
A[0]: Y = 0;
A[1]: Y = 1;
A[2]: Y = 2;
A[3]: Y = 3;
A[4]: Y = 4;
A[5]: Y = 5;
A[6]: Y = 6;
A[7]: Y = 7;
default: Y = 3’bX; // Don’t care when input is all 0’s

endcase
endmodule

9/6/2007 EECS 150, Fa07, Lec 04-HDL 48© UC Berkeley

Parallel Case
• A priority encoder is more expensive than a simple encoder

– If we know the input is 1-hot, we can tell the synthesis tools
– “parallel-case” pragma says the order of cases does not matter

// simple encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (1’b1) // synthesis parallel-case
A[0]: Y = 0;
A[1]: Y = 1;
A[2]: Y = 2;
A[3]: Y = 3;
A[4]: Y = 4;
A[5]: Y = 5;
A[6]: Y = 6;
A[7]: Y = 7;
default: Y = 3’bX; // Don’t care when input is all 0’s

endcase
endmodule

9/6/2007 EECS 150, Fa07, Lec 04-HDL 49© UC Berkeley

Verilog casex

• Like case, but cases can include ‘X’
– X bits not used when evaluating the cases
– In other words, you don’t care about those bits!

9/6/2007 EECS 150, Fa07, Lec 04-HDL 50© UC Berkeley

casex Example
// Priority encoder
module encode (A, valid, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
output valid; // Asserted when an input is not all 0’s
reg [2:0] Y; // target of assignment
reg valid;

always @(A) begin
valid = 1;
casex (A)

8’bXXXXXXX1: Y = 0;
8’bXXXXXX10: Y = 1;
8’bXXXXX100: Y = 2;
8’bXXXX1000: Y = 3;
8’bXXX10000: Y = 4;
8’bXX100000: Y = 5;
8’bX1000000: Y = 6;
8’b10000000: Y = 7;
default: begin

valid = 0;
Y = 3’bX; // Don’t care when input is all 0’s

end
endcase

end
endmodule

9/6/2007 EECS 150, Fa07, Lec 04-HDL 51© UC Berkeley

Verilog for
• for is similar to C
• for statement is executed at compile time (like macro

expansion)
– Result is all that matters, not how result is calculated
– Use in testbenches only!

// simple encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
integer i; // Temporary variables for program only
reg [7:0] test;

always @(A) begin
test = 8b’00000001;
Y = 3’bX;
for (i = 0; i < 8; i = i + 1) begin

if (A == test) Y = N;
test = test << 1;

end
end

endmodule
9/6/2007 EECS 150, Fa07, Lec 04-HDL 52© UC Berkeley

module life (neighbors, self, out);
input self;
input [7:0] neighbors;
output out;
reg out;
integer count;
integer i;
always @(neighbors or self) begin
count = 0;
for (i = 0; i<8; i = i+1) count = count + neighbors[i];
out = 0;
out = out | (count == 3);
out = out | ((self == 1) & (count == 2));

end
endmodule

Another Behavioral Example

always block is executed instantaneously,
if there are no delays only the final result is used

integers are temporary compiler variables

• Computing Conway’s Game of Life rule
– Cell with no neighbors or 4 neighbors dies; with 2-3 neighbors lives

9/6/2007 EECS 150, Fa07, Lec 04-HDL 53© UC Berkeley

Verilog while/repeat/forever
• while (expression) statement

– Execute statement while expression is true

• repeat (expression) statement
– Execute statement a fixed number of times

• forever statement
– Execute statement forever

9/6/2007 EECS 150, Fa07, Lec 04-HDL 54© UC Berkeley

full-case and parallel-case

• // synthesis parallel_case
– Tells compiler that ordering of cases is not important
– That is, cases do not overlap

» e. g., state machine - can’t be in multiple states
– Gives cheaper implementation

• // synthesis full_case
– Tells compiler that cases left out can be treated as don’t cares
– Avoids incomplete specification and resulting latches

9/6/2007 EECS 150, Fa07, Lec 04-HDL 55© UC Berkeley

Sequential Logic

• Notes:
– “always @ (posedge CLK)” forces Q

register to be rewritten every simulation
cycle.

– “>>” operator does right shift (shifts in a
zero on the left).

– Shifts on non-reg variables can be done
with concatenation:
wire [3:0] A, B;
assign B = {1’b0, A[3:1]}

//Parallel to Serial converter
module ParToSer(LD, X, out, CLK);

input [3:0] X;
input LD, CLK;
output out;
reg out;
reg [3:0] Q;
assign out = Q[0];
always @ (posedge CLK)

if (LD) Q=X;
else Q = Q>>1;

endmodule // mux2

module FF (CLK,Q,D);
input D, CLK;
output Q; reg Q;
always @ (posedge CLK) Q=D;

endmodule // FF 9/6/2007 EECS 150, Fa07, Lec 04-HDL 56© UC Berkeley

Testbench

module testmux;
reg a, b, s;
wire f;
reg expected;

mux2 myMux (.select(s), .in0(a), .in1(b), .out(f));

initial
begin

s=0; a=0; b=1; expected=0;
#10 a=1; b=0; expected=1;
#10 s=1; a=0; b=1; expected=1;

end
initial

$monitor(
"select=%b in0=%b in1=%b out=%b, expected out=%b time=%d",
s, a, b, f, expected, $time);

endmodule // testmux

• Notes:
– initial block similar to always except only

executes once (at beginning of simulation)
– #n’s needed to advance time
– $monitor - prints output

– A variety of other “system functions”, similar
to monitor exist for displaying output and
controlling the simulation.

Top-level modules written specifically to test sub-modules.

Generally no ports.

9/6/2007 EECS 150, Fa07, Lec 04-HDL 57© UC Berkeley

Final thoughts
• Verilog looks like C, but it describes hardware

– Multiple physical elements, Parallel activities
– Temporal relationships
– Basis for simulation and synthesis
– figure out the circuit you want, then figure out how to express

it in Verilog

• Understand the elements of the language
– Modules, ports, wires, reg, primitive, continuous assignment,

blocking statements, sensitivity lists, hierarchy
– Best done through experience

• Behavioral constructs hide a lot of the circuit
details but you as the designer must still manage
the structure, data-communication, parallelism,
and timing of your design.

