EECS 150 - Components and Design
Techniques for Digital Systems

Lec 04 — Hardware Description
Languages / Verilog

9/6/2007

David Culler
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

© uc Berkeley

Review

» Advancing technology changes the trade-offs
and design techniques
— 2x transistors per chip every 18 months

* ASIC, Programmable Logic, Microprocessor

* Programmable logic invests chip real-estate to
reduce design time & time to market
— Canonical Forms, Logic Minimization, PLAs, =

 FPGA:
— programmable interconnect,
— configurable logic blocks
» LUT + storage
— Block RAM
— 10 Blocks

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

Outline

* Netlists

» Design flow

* What is a HDL?

* Verilog

* Announcements

e Structural models

* Behavioral models

» Elements of the language

» Lots of examples l ‘ \ J

9/6/2007 © UC Berkeley EECS 150, Fa07,

Remember: to design is to represent

 How do we represent digital designs?

« Components

— Logic symbol, truth table

— Storage symbol, timing diagram
» Connections

— Schematics

Human readable or machine readable???

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

Design Flow

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 5

Netlist

« A key data structure (or

representation) in the design

process is the “netlist”:
— Network List

* A netlist lists components and

connects them with nodes:

ex:

gl "and" nl n2 n5
g2 "and" n3 n4 n6
g3 "or'" n5 n6 n7

Alternative format:

nl
n2
n3
n4
n5
n6
n7
gl
g2
g3

Netlist is needed for simulation and

gl.inl

gl.in2

g2.inl

g2.in2

gl.out g3.inl
g2.out g3.in2
g3.out

“and"

"and"

or'

implementation.

Could be at the transistor level, gate

level, ...

Could be hierarchical or flat.
How do we generate a netlist?

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

Design Flow

» Circuit is described and
represented:
— Graphically (Schematics)
— Textually (HDL)

High-level + Result of circuit specification
Analysis (and compilation) is a netlist
of:
— generic primitives - logic gates,
flip-flops, or
Technology p-tiop e
. — technology specific primitives -
Mapping LUTs/CLBs, transistors, discrete
gates, or
— higher level library elements -
Low-level adders, ALUs, register files,

decoders, etc.

Analysis

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 7

Design Flow

Design
Entry

Technology
Mapping

Low-level
Analysis

¢ High-level Analysis is used to

verify:

— correct function

— rough:

» timing
» power
» cost

¢ Common tools used are:

— simulator - check functional

correctness, and
— static timing analyzer

» estimates circuit delays based on
timing model and delay
parameters for library elements

(or primitives).

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

Design Flow

High-level
Analysis

9/6/2007 © ucC Berkeley

* Technology Mapping:
— Converts netlist to implementation
technology dependent details
» Expands library elements,
» performs:
« partitioning
« placement,
* routing

* Low-level Analysis

— Simulation and Analysis Tools
perform low-level checks with:

» accurate timing models,
» wire delay

— For FPGAs this step could also
use the actual device.

EECS 150, Fa07, Lec 04-HDL 9

Design Flow

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

Netlist:

used between and
internally for all steps.

10

Design Entry

e Schematic entry/editing used
to be the standard method in
industry

e Used in EECS150 until
recently

© Schematics are intuitive. They

match our use of gate-level or
block diagrams.

© Somewhat physical. They
imply a physical
implementation.

® Require a special tool (editor).

® Unless hierarchy is carefully
designed, schematics can be
confusing and difficult to
follow.

9/6/2007 © ucC Berkeley

= Schematie Caphare - [ADDERT SCH)

Elfe [& Hod Dobons Hewchy View Disgly

windore Help laix
e‘llﬂ (1A [i T N S N = .
ﬁ -

al

e
= e J—
7 > o e
H .. |
+

s o

[Salect and Drag

» Hardware Description
Languages (HDLs) are the new
standard

— except for PC board design, where
schematics are still used.

EECS 150, Fa07, Lec 04-HDL 11

HDLs

* Basic ldea:

— Language constructs describe circuits “Structural” example:

with two basic forms:

— Structural descriptions similar to {
hierarchical netlist.

wire
— Behavioral descriptions use higher-
level constructs (similar to
conventional programming). nand
» Originally designed to help in
abstraction and simulation.
— Now “logic synthesis” tools exist to 3

Decode

nand(xl, abar, b);
nand(x2, a,
nand(x3, a, b);

r(output x0,x1,x2,x3;
inputs a,b)

abar, bbar;

inv(bbar, b);
inv(abar, a);

(x0, abar, bbar)

bbar);

automatically convert from behaviorab “Behavioral” example:

descriptions to gate netlist.
— Greatly improves designer productivity.
— However, this may lead you to falsely

Decoder (output x0,x1,x2,x3;

inputs a,b)

. . case [a b
believe that hardware design can be 00:[[X0]X1 x2 x3] = 0x0;
reduced to writing programs! 01: [x0 x1 x2 x3] = Ox2-
10: [x0 x1 x2 x3] = 0x4;
11: [x0 x1 x2 x3] = 0x8;

endcase;

9/6/2007 EECS 150, Fa07, Lec da-HDL

© uc Berkeley

12

Design Methodology

Structure and Function HDL
(Behavior) of a Design Specification

AN

Simulation Synthesis

Verification: Design
Behave as Required?
Functional: I/O Behavior
Register-Level (Architectural)
Logic-Level (Gates)
Transistor-Level (Electrical)
Timing: Waveform Behavior

Generation: Map
Specification to
Implementation

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

13

Quick History of HDLs

e ISP (circa 1977) - research project at CMU
— Simulation, but no synthesis

« Abel (circa 1983) - developed by Data-I/O
— Targeted to programmable logic devices
— Not good for much more than state machines

» Verilog (circa 1985) - developed by Gateway (now Cadence)
— Similar to Pascal and C, originally developed for simulation
— Fairly efficient and easy to write
— 80s Berkeley develops synthesis tools
— |EEE standard

e VHDL (circa 1987) - DoD sponsored standard
— Similar to Ada (emphasis on re-use and maintainability)
— Simulation semantics visible
— Very general but verbose
— |EEE standard

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 14

Verilog

» Supports structural and behavioral descriptions

e Structural
— Explicit structure of the circuit

— How a module is composed as an interconnection of more
primitive modules/components

— E.g., each logic gate instantiated and connected to others
* Behavioral
— Program describes input/output behavior of circuit

— Many structural implementations could have same behavior
— E.g., different implementations of one Boolean function

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

15

Verilog Introduction

» the module describes a component in the circuit

 Two ways to describe:
— Structural Verilog
» List of components and how they are connected

» Just like schematics, but using text
e Anetlist

» tedious to write, hard to decode
» Essential without integrated design tools
— Behavioral Verilog
» Describe what a component does, not how it does it
» Synthesized into a circuit that has this behavior
» Result is only as good as the tools

* Build up a hierarchy of modules

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 16

Structural Model - XOR

_____ - module name

modulei xor_gate§ (out, a, b:); port list
input A, by T '
output out;
wire abar, bbar, tl, t2; declarations
Built-in gates
inverter invA (abar, a); statements

inverter invB (bbar, b);
and_gate andl (tl, a, bbar);

and_gate and2 (t2, b, abar); —Ar and1)_ tl
8

nvA

or_gate orl (out, tl1l, t2);

N

endmodul interconnections

o
[(S ———
—

and2
—|>0—/

Instance name | el i

g

— Composition of primitive gates to form more complex module
— Note use of wire declaration!

oerpcgy default, identifiers argwires, ¢.o7 e ool 17

Structural Model: 2-tol mux

//2-input multiplexor in gates * Notes:

module mux2 (in0, inl, select, out); — comments
input in0,inl,select; - “module”
output out; — port list

— declarations

— wire type

— primitive gates
— Instance names?
— List per type

wire sO,w0,wl;

not (sO, select);

and (w0, sO, in0),
(wl, select, inl);

or (out, wO, wl);

endmodule // mux2

inl
sO

select

in0

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 18

Simple Behavioral Model

* Combinational logic
— Describe output as a function of inputs
— Note use of assign keyword: continuous assignment

module and_gate (out, inl, in2);

input mlf inz; Output port of a primitive must
output out; be first in the list of ports
i assign out = inl & in2; | Restriction does not apply to
Femmmmmmessssseoocooeooooooooo xpmee- ' modules in general
endmodule

\
\

When is this “evaluated” ?

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 19

2-to-1 mux behavioral description

¢ Notes:

— behavioral descriptions using
keyword always followed by

// Behavioral model of 2-to-1
// multiplexor.

module mux2 (in0,inl,select,out); blocking procedural assignments
input in0,inl,select; — Target output of procedural
output out; assignments must of of type reg
// (not a real register)
reg out; — Unlike wire types where the

target output of an assignment
may be continuously updated, a
reg type retains it value until a
new value is assigned (the
assigning statement is executed).

— Optional initial statement

always @ (inO or inl or select)
if (select) out=inl;
else out=in0;
endmodulle // mux2

Sensitivity list

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 20

Behavioral 4-to1 mux

//Does not assume that we have * Notes:
// defined a 2-input mux. - No instantiation
— Case construct equivalent to
//4-input mux behavioral description nestedif constructs.
module mux4 (inO, inl, in2, iIn3, select, out);
input in0,inl,in2,in3; — Definition: A structural

= - - description is one where the
input [1:0] select; function of the module is defined

output out; by the instantiation and
reg out; interconnection of sub-modules.
— A behavioral description uses
always @ (inO inl in2 in3 select) higher level language constructs
case (select) and operators.

— Verilog allows modules to mix
both behavioral constructs and
sub-module instantiation.

27b00: out=in0;
27b01: out=inl;
27b10: out=in2;
27bll: out=in3;
endcase
endmodule // mux4

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 21

Mixed Structural/Behavioral Model

 Example 4-bit ripple adder

module full_addr (S, Cout, A, B, Cin);
input A, B, Cin;
output S, Cout;

assign {Cout, S} = A + B + Cin; Behavior'

endmodule

module adder4 (S, Cout, A, B, Cin);
input [3:0] A, B;

input Cin;

output [3:0] S;

output Cout;

wire c1, c2, ¢s; Structural

full_addr fa0 (S[0], C1, A[0], B[O], Cin);

full_addr fal (S[1], C2, A[1], B[1], Cl);

full_addr fa2 (S[2],C3, A[2], B[2]., C2);

full_addr fa3 (S[3], Cout, A[3], B[3], C3);
endmodule

Order of ports?
9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 22

Announcements

Office hours will be posted on schedule.php
Homework 1 due tomorrow (2 pm outside 125)
Homework 2 out today

Feedback on labs, Lab lectures

Reading:

- these notes
- verilog code you seein lab

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 23

Verilog Help

* The lecture notes only cover the basics of Verilog and
mostly the conceptual issues.
— Lab Lectures have more detail focused on lab material

» Textbook has examples.

* Bhasker book is a good tutorial.

e http://www.doe.carleton.ca/~shams/97350/PetervrIK.pdf pretty
good

* The complete language specification from the IEEE is
available on the class website under “Refs/Links”

e http://toolbox.xilinx.com/docsan/xilinx4/data/docs/xst/verilog2.html

A
VERILOG HDL
PRIMER

n.
-
LR
RS S
1. Biaskin

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

Verilog Data Types and Values

e Bits - value on a wire
-0,1
— X -don’t care/don’t know
— Z -undriven, tri-state

» Vectors of bits

— A[3:0] - vector of 4 bits: A[3], A[2]1, A[1]. A[O]

— Treated as an unsigned integer value
»eg.,A<07??

— Concatenating bits/vectors into a vector
» e.g., sigh extend
» B[7:0] = {A[3]1., AL[3]. A[3]., A[3]1, A[3:0]1};
» B[7:0] = {3{A[31}. A[3:01};

— Style: Use a[7:0] = b[7:0] + c;
Not:a = b + c;

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

/I need to look at declaration

25

Verilog Numbers

- 14 - ordinary decimal number

- -14 - 2's complement representation

e 127b0000_0100_0110 - binary number with 12
bits (_is ignored)

e 127h046 - hexadecimal number with 12 bits

» Verilog values are unsigned
- e.g., C[4:0] = A[3:0] + B[3:0]1;

— if A=0110 (6) and B = 1010(-6)
C = 10000 not 00000
i.e., B is zero-padded, not sign-extended

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 26

Verilog Operators

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

> greater than Relational
5= greater than or equal fo Relational
0 bit-select or part-select . less than Relational
P less than or equal to Relational
enthesis
O parenthesi - logical equality Equality
: logical negation Logical = logical inequality Equality
- negation Bit-wise — . -
& reduction AND Reduction - case equality quality
| reduction OR Reduction = case inequality Equality
~& reduction NAND Reduction o s
- reduction NOR Reduction & bit-wise AND Bit-wise
A reduction XOR Reduction
: : A bit-wise XOR Bit-wise
Ao A duction XNOR Reduct
redvction eduetion A-or=n | bit-wise XNOR Bit-wise
+ unary (sign) plus Acithmetic - o
- unary (sign) minus Arithmetic | bit-wise OR Bit-wise
¥ concatenation Concatenation && logical AND Logical
“y T Replication I logical OR Logical
multiply Acithmetic 1A conditional Conditional
/ divide Arithmetic
% modulus Arithmetic
+ binary plus Arithmetic
. binary minus Arithmetic
<< shift left Shifr
>> shift right Shift

27

Verilog Variables

* wire
— Variable used simply to connect components together
e reg

— Variable that saves a value as part of a behavioral description
— Usually corresponds to a wire in the circuit
— Is NOT necessarily aregister in the circuit

e usage:
— Don’t confuse reg assignments with the combinational continuous
assign statement! (more soon)
— Reg should only be used with always blocks (sequential logic, to
be presented ...)

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 28

Verilog Module

» Corresponds to a circuit component
— “Parameter list” is the list of external connections, aka “ports”

— Ports are declared “input”, “output” or “inout” A B Cin
» inout ports used on tri-state buses l l l

— Port declarations imply that the variables are wires

module name ports

b

module full_addr (A, B, Cin, S, Cout); Cout S

input A, B, Cin;
output S, Cout; >inputs/outputs

assign {Cout, S} = A + B + Cin;
endmodule

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

29

Verilog Continuous Assignment

» Assignment is continuously evaluated

e assign corresponds to a connection or a simple
component with the described function

» Targetis NEVER areg variable
* Dataflow Style use of Boolean operators

(~ for bit-wise, | for logical negation)
assign A = X | (Y & ~2); t//////// I 9

bits can take on four values

assign B[3:0] = 47b01XX; “ (0 1 X 2)

assign C[15:0] = 4"hOOff; <« variables can be n-bits wide
L 1 (MSB:LSB)

assign #3 {Cout, S[3:0]} = A[3:0] + B[3:0] + Cin;

N

delay of performing computation, only used by simulator, not synthesis
9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 30

use of arithmetic operator

multiple assignment (concatenation)

Comparator Example

module Comparel (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;

assign Equal = (A &B) | (-A & -B);
assign Alarger = (A & ~B);
assign Blarger = (A & B);

endmodule
When evaluated?
What is synthesized?
9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

31

Comparator Example

// Make a 4-bit comparator from 4 1-bit comparators

module Compare4(A4, B4, Equal, Alarger, Blarger);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, el, e2, e3, AlO, All, Al2, Al3, B10, BI1, Bl2, BI3;

Comparel cp0(A4[0], B4[0], €0, AlO, BI0);
Comparel cpl(A4[1], B4[1], el, Al1, BIl);
Comparel cp2(A4[2], B4[2], e2, Al2, Bl2);
Comparel cp3(A4[3], B4[3], e3, Al3, BI3);

assign Equal = (e0 & el & e2 & e3);
assign Alarger = (AI3 | (AI2 & e3) |
(All & e3 & e2) |
(AIO & €3 & e2 & el));
assign Blarger = (~Alarger & ~Equal);
endmodule
What would be a “better” behavioral version?

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 32

Simple Behavioral Model - the always
block

< always block

— Always waiting for a change to a trigger signal
— Then executes the body

module and_gate (out, inl, in2);
input inl, in2;
output out;

. _———— | Notareal register!!
re out; : 7
g A Verilog register

. B} B} Needed because of
always @(inl or in2) begin assignment in always

out = Inl & In2; block

end
endmodule

Specifies when block is executed
ILe., triggered by which signals

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 33

always Block

* A procedure that describes the function of a
circuit
— Can contain many statements including if, for, while, case
— Statements in the always block are executed sequentially
» “blocking” assignment

» Continuous assignments <= are executed in parallel
« Non-blocking

— The entire block is executed ‘at once’

» But the meaning is established by sequential interpretation
¢ Simulation micro time vs macro time
« synthesis

— The final result describes the function of the circuit for current
set of inputs

» intermediate assignments don’t matter, only the final result
= begin/end used to group statements

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 34

What Verilog generates storage elements?

* Expressions produce combinational logic
— Map inputs to outputs

» Storage elements carries same values forward in
time

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 35

State Example

module shifter (in, A,B,C,clk);

input in, clk;

input A,B,C;

reg A, B, C;

always @ (posedge clk) begin
C =
B =
A = 1In;

end in A B C

- >

endmodule

clk T T T

« Block interpreted sequentially, but action happens “at once”

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 36

State Example2 — Non blocking

module shifter (in, A,B,C,clk);
input in, clk;
input A,B,C;
reg A, B, C;
always @ (posedge clk) begin
B <= A;

A <= in;

C <= B; in A B c

end

endmodule clk ‘|‘ T ‘|‘

* Non-blocking: all statements interpreted in parallel
— Everything on the RHS evaluated,
— Then all assignments performed

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 37

State Example2 — interactive quiz

module shifter (in, A,B,C,clk); * Variable becomes a
storage element if its
value is preserved
(carried forward in time)

input in, clk;
input A,B,C;

reg A, B, C; despite changes in
always @ (posedge clk) begin variables the produce it.
A =in; * Not whether it is declared
B = A; as awire or a reg!
C =B,
end in A
endmodule B
C
clk _]
9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 38

“Complete” Assignments

* If an always block executes, and a variable is
not assigned
— Variable keeps its old value (think implicit state!)

— NOT combinational logic = latch is inserted (implied
memory)

— This is usually not what you want: dangerous for the novice!

* Any variable assigned in an always block should
be assigned for any (and every!) execution of the
block.

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 39

Incomplete Triggers

* Leaving out an input trigger usually results in a
sequential circuit

 Example: The output of this “and” gate depends
on the input history

module and_gate (out, inl, in2);

input inl, In2;
output out;
reg out;

What Hardware would this
generate?

always @(inl) begin
out = iInl & in2;
end

endmodule

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 40

Behavioral with Bit Vectors

//Behavioral model of 32-bitwide 2-to-1 multiplexor.
module mux32 (in0,inl,select,out);
input [31:0] in0,inl;

input select; . _
output [31:0] out; Notes:
//

reg [31:0] out;
always @ (inO or inl or select)
if (select) out=inl;
else out=in0;
endmodule // Mux

//Behavioral model of 32-bit adder.
module add32 (S,A,B);

input [31:0] A,B;

output [31:0] S;

reg [31:0] S;

always @ (A or B)

S = A + B;
endmodule // Add
9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

— inputs, outputs 32-bits wide

41

Hierarchy & Bit Vectors

* Notes:
— instantiation similar to primitives
— select is 2-bits wide
— named port assignment

//Assuming we have already
// defined a 2-input mux (either
// structurally or behaviorally,

//4-input mux built from 3 2-Input muxes
module mux4 (inO, inl, in2, in3, select, out);
input in0,inl,in2,in3;
input [1:0] select;

output out;
wire wo,wl;
mux2

mO0 (.select(select[0]), -in0O(in0), .inl(inl), .out(w0)),
ml (.select(select[0]), .in0(in2), .in1(in3), .out(wl)),

m3 d.select(select[l]), -inO(w0), .inl1(wl), .out(out));
endmodule-77 -mux:

Which select?

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 42

Verilog 1f

* Same syntax as C if statement
* Sequential meaning, action “at once”

// Simple 4-1 mux

module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel == 2°b00) Y = A;

else if (sel == 2°b01) Y = B;
else if (sel == 2°b10) Y = C;
else if (sel == 2°bl1l1l) Y = D;

endmodule

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

43

Verilog 1f

// Simple 4-1 mux

module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;
reg Y; // target of assignment
always @(sel or A or B or C or D)
if (sel[0] == 0)
if (sel[1] == 0) Y = A;
else Y = B;
else
if (sel[1] == 0) Y = C;
else Y = D;
endmodule
9/6/2007 © uc Berkeley EECS 150, Fa07, Lec 04-HDL 44

Verilog case

* Sequential execution of cases
— Only first case that matches is executed (no break)
— Default case can be used

// Simple 4-1 mux

module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)

case (sel)
2’b00: Y = A;
2°b01: Y = B;
2°b10: Y = C;
2’b11: Y = D;

endcase

endmodule
9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL

Conditions tested in
top to bottom order

45

Verilog case

« Without the default case, this example would create a latch for Y!
— your generating hardware, not programming

» Assigning X to a variable means synthesis is free to assign any
value

// Simple binary encoder (input is 1-hot)
module encode (A, Y);
input [7:0] A;
output [2:0] Y;
reg [2:0] Y;

// 8-bit input vector
// 3-bit encoded output
// target of assignment

always @(A)
case (A)
8~b00000001 :
87b00000010:
8”b00000100:
8~b00001000:
87b00010000:
8~b00100000:
8~b01000000:
87b10000000:
default:
endcase

o/ Endmodule

<< << <<=<=<=<

WNOOUDMWNRERO

"
o)
<

// Don’t care when input is not 1-hot

= UL UTincicy

Verilog case (cont)

» Cases are executed sequentially
— The following implements a priority encoder

// Priority encoder
module encode (A, Y);
input [7:0] A;
output [2:0] Y;

reg [2:0] Y;

// 8-bit input vector
// 3-bit encoded output
// target of assignment

always @(A)
case (1°bl)
A[0]: Y
A[1]: Y
Al[2]: Y
A[3]: %
A[4]: Y
A[5]: Y
A[6]: '
AL7]: Y
default: Y
endcase

endmodule

9/6/2007 © ucC Berkeley

bX; // Don’t care when input is all 0’s

EECS 150, Fa07, Lec 04-HDL

47

Parallel Case

e A priority encoder is more expensive than a simple encoder
— If we know the input is 1-hot, we can tell the synthesis tools
“parallel-case” pragma says the order of cases does not matter

// simple encoder
module encode (A, Y);
input [7:0] A;
output [2:0] Y;

reg [2:0] Y;

// 8-bit input vector
// 3-bit encoded output
// target of assignment

always @CA)
case (1°bl) // synthesis parallel-case
A[0]: Y
Al1]: Y
Al2]: Y
A[3]: Y
A[4]: Y
Y
Y
Y
Y

A[5]:
A[6]:
AL[7]:
default:
endcase
endmodule

W~NOOUDWNREFO

9
o)
>

// Don’t care when input is all 0’s

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 48

Verilog casex

» Like case, but cases can include ‘X’
— X bits not used when evaluating the cases
— In other words, you don’t care about those bits!

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 49

casex Example

// Priority encoder
module encode (A, valid, Y);

input [7:0] A; // 8-bit input vector

output [2:0] Y; // 3-bit encoded output

output valid; // Asserted when an input is not all 0’s
reg [2:0] Y; // target of assignment

reg valid;

always @(A) begin
valid = 1;
casex (A)
87bXXXXXXX1: Y
87bXXXXXX10: Y
87bXXXXX100: Y
87bXXXX1000: Y
87bXXX10000: Y
87bXX100000: Y
87bX1000000: Y
87b10000000: Y
default: begin
valid = 0;
Y = 3”bX; // Don’t care when input is all 0’s
end
endcase
end
endmodule

NO A WNREO

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 50

Verilog for

e foris similarto C
< for statement is executed at compile time (like macro
expansion)
— Result is all that matters, not how result is calculated
— Use in testbenches only!

// simple encoder
module encode (A, Y);

input [7:0] A; // 8-bit input vector

output [2:0] Y; // 3-bit encoded output

reg [2:0] Y; // target of assignment

integer i; // Temporary variables for program only

reg [7:0] test;

always @(A) begin
test = 8b”00000001;
Y = 37bX;
for (i =0; 1 <8; i =1 + 1) begin
if (A== test) Y = N;
test = test << 1;
end
end

endmodule
9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 51

Another Behavioral Example

 Computing Conway’s Game of Life rule
— Cell with no neighbors or 4 neighbors dies; with 2-3 neighbors lives

module life (neighbors, self, out);

input self;

input [7:0] neighbors;

output out; | integers are temporary compiler variables

reg out;

integer count; always block is executed instantaneously,
integer i; if there are no delays only the final result is used

always @(neighbors or self) begin

count = O;
for (i = 0; i<8; 1 = i+l) count = count + neighbors[i];
out = 0;
out = out | (count == 3);
out = out | ((self == 1) & (count == 2));
end
9/6/2(30n7dmodu I©eUC Berkeley EECS 150, Fa07, Lec 04-HDL 52

Verilog while/repeat/forever

< while (expression) statement
— Execute statement while expression is true

= repeat (expression) statement
— Execute statement a fixed number of times

e forever statement
— Execute statement forever

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 53

full-case and parallel-case

e // synthesis parallel_case
— Tells compiler that ordering of cases is not important
— That is, cases do not overlap
» e. g., state machine - can’t be in multiple states
— Gives cheaper implementation

e // synthesis full_case
— Tells compiler that cases left out can be treated as don’t cares
— Avoids incomplete specification and resulting latches

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 54

Sequential Logic

//Parallel to Serial converter

module ParToSer(LD, X, out, CLK);
input [3:0] X;
input LD, CLK;
output out;

reg out;

reg [3:0] Q;

assign out = Q[0]; * Notes:

always @ (posedge CLK) - :Zé\livsa;)é? t(? lggorse(\:‘;\?r?t?e?_elfl);r;o:iﬁiIgtion
if (LD) Q=X; cycle.
else Q = Q>>1; — “>>" operator does right shift (shifts in a

zero on the left).

— Shifts on non-reg variables can be done
with concatenation:

module FF (CLK,Q,D); wire [3:0] A, B;
input D, CLK; assign B = {1°b0, A[3:1]}
output Q; reg Q;
always @ (posedge CLK) Q=D;

efidoddule &Adreley EECS 150, Fa07, Lec 04-HDL 55

endmodule // mux2

Testbench

Top-level modules written specifically to test sub-modules.

Generally no ports.

* Notes:
module testmux; — initial block similar to always except only
reg a, b, s; executes once (at beginning of simulation)
wire f; — #n’s needed to advance time
reg expected; — $monitor - prints output

mux2 myMux (.select(s), -in0(a), -inl(b), .out(F));

o — A variety of other “system functions”, similar
initial to monitor exist for displaying output and
begin controlling the simulation.

s=0; a=0; b=1; expected=0;

#10 a=1; b=0; expected=1;
#10 s=1; a=0; b=1; expected=1;
end
initial
$monitor(
"select=%b in0=%b inl=%b out=%b, expected out=%b time=%d",
s, a, b, f, expected, $time);
9/6/288modu I © 4£ Beesmux ~ EECS 150, Fa07, Lec 04-HDL 56

Final thoughts

Verilog looks like C, but it describes hardware
— Multiple physical elements, Parallel activities
— Temporal relationships
— Basis for simulation and synthesis
— figure out the circuit you want, then figure out how to express
itin Verilog
Understand the elements of the language

— Modules, ports, wires, reg, primitive, continuous assignment,
blocking statements, sensitivity lists, hierarchy

— Best done through experience

Behavioral constructs hide a lot of the circuit
details but you as the designer must still manage
the structure, data-communication, parallelism,
and timing of your design.

9/6/2007 © UC Berkeley EECS 150, Fa07, Lec 04-HDL 57

