
EECS 150 - Components and Design
Techniques for Digital Systems

Lec 03 – Field Programmable Gate
Arrays
9-4-07

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

9/4/2007 EECS 150, Fa07, Lec 03-fpga 2

Review
• Building blocks of computer systems

– ICs (Chips), PCBs, Chassis, Cables & Connectors

• CMOS Transistors
– Voltage controlled switches
– Complementary forms (nmos, pmos)

• Logic gates from CMOS transistors
– Logic gates implement particular boolean functions

» N inputs, 1 output
– Serial and parallel switches
– Dual structure
– P-type “pull up” transmit 1
– N-type

• Complex gates: mux
• Synchronous Sequential Elements [today]

– D FlipFlops

9/4/2007 EECS 150, Fa07, Lec 03-fpga 3

Question from Thurs

8/30/2007 EECS150-F05 CMOS lec02 33© UC Berkeley

Transmission Gate
• Transmission gates are the way to build “switches” in

CMOS.
• Both transistor types are needed:

– nFET to pass zeros.
– pFET to pass ones.

• The transmission gate is bi-directional (unlike logic gates
and tri-state buffers).

• Functionally it is similar to the tri-state buffer, but does
not connect to Vdd and GND, so must be combined with
logic gates or buffers.

Is it self restoring? How does nFET behave

• when EN is Hi, S = D = lo?

• when EN is Hi, S = D = Hi?

How does nFET behave

• when EN is Hi, S = D = Hi?

• when EN is Hi, S = D = lo?

Together they go

Rail-to-Rail☺

9/4/2007 EECS 150, Fa07, Lec 03-fpga 4

inputs outputssystem

Combinational vs. Sequential Digital
Circuits

• Simple model of a digital system is a unit
with inputs and outputs:

• Combinational means "memory-less"
– Digital circuit is combinational if its output values

only depend on its inputs

9/4/2007 EECS 150, Fa07, Lec 03-fpga 5

Sequential logic

• Sequential systems
– Exhibit behaviors (output values) that depend

on current as well as previous inputs

• All real circuits are sequential
– Outputs do not change instantaneously after an input change
– Why not, and why is it then sequential?

• Fundamental abstraction of digital design is to reason
(mostly) about steady-state behaviors
– Examine outputs only after sufficient time has elapsed for the

system to make its required changes and settle down

9/4/2007 EECS 150, Fa07, Lec 03-fpga 6

Synchronous sequential digital
systems
• Combinational circuit outputs depend only on

current inputs
– After sufficient time has elapsed

• Sequential circuits have memory
– Even after waiting for transient activity to finish

• Steady-state abstraction: most designers use it
when constructing sequential circuits:
– Memory of system is its state
– Changes in system state only allowed at specific times

controlled by an external periodic signal (the clock)
– Clock period is elapsed time between state changes

sufficiently long so that system reaches steady-state before
next state change at end of period

9/4/2007 EECS 150, Fa07, Lec 03-fpga 7

Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk

9/4/2007 EECS 150, Fa07, Lec 03-fpga 8

D-type edge-triggered flip-flop

• The edge of the clock is used
to sample the "D" input &
send it to "Q” (positive edge
triggering).

– At all other times the output Q is
independent of the input D (just
stores previously sampled value).

– The input must be stable for a
short time before the clock edge.

9/4/2007 EECS 150, Fa07, Lec 03-fpga 9

D-type edge-triggered flip-flop

• The edge of the clock is used
to sample the "D" input &
send it to "Q” (positive edge
triggering).

– At all other times the output Q is
independent of the input D (just
stores previously sampled value).

– The input must be stable for a
short time before the clock edge.

01 01 010

9/4/2007 EECS 150, Fa07, Lec 03-fpga 10

Parallel to Serial Converter Example

• 4-bit version:

• Operation:
– cycle 1: load x, output x0

– cycle i: output xi

if LD=1
load FF from xi
else from previous stage.

• Each stage:

LD=1

x3 x2 x1 x0

LD=0

?? x3 x2 x1?? ?? x3 x2?? ?? ?? x3

9/4/2007 EECS 150, Fa07, Lec 03-fpga 11

Parallel to Serial Converter Example

• timing:

9/4/2007 EECS 150, Fa07, Lec 03-fpga 12

Transistor-level Logic Circuits - Latch

• Positive Level-sensitive
latch

• Transistor Level • Positive Edge-triggered
flip-flop built from two
level-sensitive latches:

clk’

clk

clk

clk’

D FlipFlop

9/4/2007 EECS 150, Fa07, Lec 03-fpga 13

Positive Edge-triggered Flip-flop
• Flip-flop built from two

latches:
• When clk low, left latch

acts as feedthrough, and Q
is stored value of right
latch.

• When clk high left latch
stores values and right
latch acts as feedthrough.

D D QQ

clk

9/4/2007 EECS 150, Fa07, Lec 03-fpga 14

scope of CS 150

Summary: Representation of digital
designs

• Physical devices (transistors, relays)
• Switches
• Truth tables
• Boolean algebra
• Gates
• Waveforms
• Finite state behavior
• Register-transfer behavior
• Concurrent abstract specifications

more depth than 61C

focus on building systems

9/4/2007 EECS 150, Fa07, Lec 03-fpga 15

Outline
• Review
• What are FPGAs?
• Why use FPGAs (a short history lesson).
• Canonical Forms => Programmable Logic
• FPGA variations
• Internal logic blocks.
• Designing with FPGAs.
• Specifics of Xilinx Virtex-E series.
Today’s reading

• Katz: 9.4 pp 428-447 (especially 9.4.4)

• XILINX Virtex-E FPGA data sheet (first 10 pages)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 16

FPGA Overview
• Basic idea: two-dimensional array of logic blocks and flip-

flops with a means for the user to configure:
1. the interconnection between the logic blocks,
2. the function of each block.

Simplified version of FPGA internal architecture:

9/4/2007 EECS 150, Fa07, Lec 03-fpga 17

Why FPGAs?
• By the early 1980’s most of the logic circuits in typical

systems where absorbed by a handful of standard large
scale integrated circuits (LSI).

– Microprocessors, bus/IO controllers, system timers, ...

• Every system still had the need for random “glue logic” to
help connect the large ICs:

– generating global control signals (for resets etc.)
– data formatting (serial to parallel, multiplexing, etc.)

• Systems had a few LSI components and lots of small low
density SSI (small scale IC) and MSI (medium scale IC)
components.

9/4/2007 EECS 150, Fa07, Lec 03-fpga 18

Why FPGAs?
• Custom ICs sometimes designed to replace the large amount of

glue logic:
– reduced system complexity and manufacturing cost, improved performance.
– However, custom ICs are very expensive to develop, and delay introduction of

product to market (time to market) because of increased design time.

• Note: need to worry about two kinds of costs:
1. cost of development, sometimes called non-recurring engineering (NRE)
2. cost of manufacture
– A tradeoff usually exists between NRE cost and manufacturing costs

total
costs

number of units manufactured (volume)

NRE

A

B

9/4/2007 EECS 150, Fa07, Lec 03-fpga 19

Why FPGAs?
• Custom IC approach viable for products that are …

– very high volume (where NRE could be amortized),
– not time-to-market sensitive.

• FPGAs introduced as an alternative to custom ICs for
implementing glue logic:

– improved density relative to discrete SSI/MSI components (within
around 10x of custom ICs)

– with the aid of computer aided design (CAD) tools circuits could be
implemented in a short amount of time (no physical layout process,
no mask making, no IC manufacturing), relative to ASICs.

» lowers NREs
» shortens TTM

• Because of Moore’s law the density (gates/area) of FPGAs
continued to grow through the 80’s and 90’s to the point
where major data processing functions can be
implemented on a single FPGA.

9/4/2007 EECS 150, Fa07, Lec 03-fpga 20

Programmable Logic

• Regular logic
– Programmable Logic Arrays
– Multiplexers/Decoders
– ROMs

• Field Programmable Gate Arrays
– Xilinx Vertex

“Random Logic”
Full Custom Design

“Regular Logic”
Structured Design

9/4/2007 EECS 150, Fa07, Lec 03-fpga 21

Canonical Forms
• Truth table is the unique signature of a Boolean

function
• Many alternative gate realizations may have the

same truth table
• Canonical forms

– Standard forms for a Boolean expression
– Provides a unique algebraic signature

9/4/2007 EECS 150, Fa07, Lec 03-fpga 22

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F' = A'B'C' + A'BC' + AB'C'

Sum-of-Products Canonical Forms
• Also known as disjunctive normal form
• Also known as minterm expansion

F = 001 011 101 110 111

+ A'BC+ AB'C + ABC' + ABCA'B'C

9/4/2007 EECS 150, Fa07, Lec 03-fpga 23

short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A'B'C' m0
0 0 1 A'B'C m1
0 1 0 A'BC' m2
0 1 1 A'BC m3
1 0 0 AB'C' m4
1 0 1 AB'C m5
1 1 0 ABC' m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + AB'C + ABC' + ABC

canonical form ≠ minimal form
F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'

= (A'B' + A'B + AB' + AB)C + ABC'
= ((A' + A)(B' + B))C + ABC'
= C + ABC'
= ABC' + C
= AB + C

Sum-of-Products Canonical Form (cont’d)

• Product term (or minterm)
– ANDed product of literals – input combination for which output is true
– Each variable appears exactly once, in true or inverted form (but not

both)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 24

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100
F =

F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

Product-of-Sums Canonical Form
• Also known as conjunctive normal form
• Also known as maxterm expansion

(A + B + C) (A + B' + C) (A' + B + C)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 25

A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C' M1
0 1 0 A+B'+C M2
0 1 1 A+B'+C' M3
1 0 0 A'+B+C M4
1 0 1 A'+B+C' M5
1 1 0 A'+B'+C M6
1 1 1 A'+B'+C' M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

= M0 • M2 • M4
= (A + B + C) (A + B' + C) (A' + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)

= (A + B + C) (A + B' + C)
(A + B + C) (A' + B + C)

= (A + C) (B + C)

Product-of-Sums Canonical Form
(cont’d)
• Sum term (or maxterm)

– ORed sum of literals – input combination for which output is false
– Each variable appears exactly once, in true or inverted form (but not

both)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 26

S-o-P, P-o-S, and deMorgan’s Theorem

• Sum-of-products
– F' = A'B'C' + A'BC' + AB'C'

• Apply de Morgan's
– (F')' = (A'B'C' + A'BC' + AB'C')'
– F = (A + B + C) (A + B' + C) (A' + B + C)

• Product-of-sums
– F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

• Apply de Morgan's
– (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
– F = A'B'C + A'BC + AB'C + ABC' + ABC

9/4/2007 EECS 150, Fa07, Lec 03-fpga 27

canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four Alternative Two-level
Implementations of F = AB + C

9/4/2007 EECS 150, Fa07, Lec 03-fpga 28

Waveforms for the Four Alternatives
• Waveforms are essentially identical

– Except for timing hazards (glitches)
– Delays almost identical (modeled as a delay per level, not type

of gate or number of inputs to gate)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 29

Mapping Between Canonical Forms
• Minterm to maxterm conversion

– Use maxterms whose indices do not appear in minterm
expansion

– e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

• Maxterm to minterm conversion
– Use minterms whose indices do not appear in maxterm

expansion
– e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7)

• Minterm expansion of F to minterm expansion of F'
– Use minterms whose indices do not appear
– e.g., F(A,B,C) = Σm(1,3,5,6,7) F'(A,B,C) = Σm(0,2,4)

• Maxterm expansion of F to maxterm expansion of
F'

– Use maxterms whose indices do not appear
– e.g., F(A,B,C) = ΠM(0,2,4) F'(A,B,C) = ΠM(1,3,5,6,7)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 30

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
– "don't care" about associated
output values, can be exploited
in minimization

Incompletely Specified Functions

• Example: binary coded decimal increment by 1
– BCD digits encode decimal digits 0 – 9 in bit patterns 0000 – 1001

don't care (DC) set of W

on-set of W

9/4/2007 EECS 150, Fa07, Lec 03-fpga 31

Notation for Incompletely Specified
Functions

• Don't cares and canonical forms
– So far, only represented on-set
– Also represent don't-care-set
– Need two of the three sets (on-set, off-set, dc-set)

• Canonical representations of the BCD increment by 1
function:

– Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
– Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

– Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
– Z = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

9/4/2007 EECS 150, Fa07, Lec 03-fpga 32

Simplification of Two-level
Combinational Logic

• Finding a minimal sum of products or product of sums
realization

– Exploit don't care information in the process

• Algebraic simplification
– Not an algorithmic/systematic procedure
– How do you know when the minimum realization has been found?

• Computer-aided design tools
– Precise solutions require very long computation times, especially for

functions with many inputs (> 10)
– Heuristic methods employed – "educated guesses" to reduce amount of

computation and yield good if not best solutions

• Hand methods still relevant
– Understand automatic tools and their strengths and weaknesses
– Ability to check results (on small examples)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 33

• • •

inputs

AND
array

• • •

outputs

OR
arrayproduct

terms

Programmable Logic Arrays (PLAs)
• Pre-fabricated building block of many AND/OR

gates
– Actually NOR or NAND
– ”Personalized" by making or breaking connections among

gates
– Programmable array block diagram for sum of products form

9/4/2007 EECS 150, Fa07, Lec 03-fpga 34

example:
F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix 1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs
term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1

reuse of terms

Enabling Concept
• Shared product terms among outputs

9/4/2007 EECS 150, Fa07, Lec 03-fpga 35

Before Programming

• All possible connections available before
"programming"

– In reality, all AND and OR gates are NANDs

9/4/2007 EECS 150, Fa07, Lec 03-fpga 36

A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After Programming

• Unwanted connections are "blown"
– Fuse (normally connected, break unwanted ones)
– Anti-fuse (normally disconnected, make wanted connections)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 37

Announcements
• Homework #1 due Friday 2pm. (#2 out thurs)
• Please do the reading (the earlier the better).
• Attend discussions!

– Held this week. Propose Fridays 11-12 and 1-2, Take vote

• Homework is an important part of the class:
– It goes beyond what is covered in class.
– High correlation to exam questions.
– Work on it seriously.
– We’ll try to post it early.
– Discussion is a good place to get hints about homework.

• Unlike some of our lower division classes we will not
necessarily tell you everything you need to know.
Some of it will come from readings and homework.

9/4/2007 EECS 150, Fa07, Lec 03-fpga 38

Why FPGAs?
• Much more general form of programmable logic
• FPGAs continue to compete with custom ICs for special

processing functions (and glue logic) but now also
compete with microprocessors in dedicated and embedded
applications.

– Performance advantage over microprocessors because circuits can
be customized for the task at hand. Microprocessors must provide
special functions in software (many cycles).

• Summary:

ASIC = custom IC, MICRO = microprocessor + SW

performance NREs
Unit
cost TTM

ASIC ASIC ASIC
FPGA

MICRO
FPGA

MICRO
FPGA

MICRO

FPGA

ASIC
MICRO

9/4/2007 EECS 150, Fa07, Lec 03-fpga 39

FPGA Variations
• Families of FPGA’s differ in:

– physical means of implementing user
programmability,

– arrangement of interconnection
wires, and

– the basic functionality of the logic
blocks.

• Most significant difference is in
the method for providing flexible
blocks and connections:

• Anti-fuse based (ex: Actel)

+ Non-volatile, relatively small
– fixed (non-reprogrammable)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 40

User Programmability
• Latches are used to:

1. make or break cross-point
connections in the
interconnect

2. define the function of the
logic blocks

3. set user options:
» within the logic blocks
» in the input/output

blocks
» global reset/clock

• “Configuration bit stream”
can be loaded under user
control:

– All latches are strung
together in a shift chain:

• Latch-based (Xilinx, Altera, …)

+ reconfigurable
– volatile
– relatively large.

latch

9/4/2007 EECS 150, Fa07, Lec 03-fpga 41

Idealized FPGA Logic Block

• 4-input look up table (LUT)
– implements combinational logic functions

• Register
– optionally stores output of LUT

4-LUT FF
1

0

latch
Logic Block set by configuration

bit-stream

4-input "look up table"

OUTPUTINPUTS

9/4/2007 EECS 150, Fa07, Lec 03-fpga 42

Boolean Functions: 1 variable

• What are the possible boolean functions of two
variable?

A False A A True

0 0 1 0 1

1 0 0 1 1

A False

0 0

1 0

A A

0 0

1 1

A A

0 1

1 0

A TRUE

0 1

1 1

9/4/2007 EECS 150, Fa07, Lec 03-fpga 43

Interactive Quiz: Boolean Functions of 2
variables?

• What are the possible boolean functions of 3, 4
variables?

A B False ?? AB A True

0 0 0 1 0 1 0 1 0 1 … 1

0 1 0 0 1 1 0 0 1 1 … 1

1 0 0 0 0 0 1 1 1 1 … 1

1 1 0 0 0 0 0 0 0 0 … 1

9/4/2007 EECS 150, Fa07, Lec 03-fpga 44

How could you build a generic boolean
logic circuit?

• 1-bit memory to
hold boolean
value

• Address is vector
of boolean input
values

• Contents encode
a boolean
function

• Read out logical
value (col) for
associated row

memory

N-bit

address

word

2N words

9/4/2007 EECS 150, Fa07, Lec 03-fpga 45

multiplexer demultiplexer 4x4 switch

control control

Recall: Multiplexer/Demultiplexer

• Multiplexer: route one of many inputs to a single
output

• Demultiplexer: route single input to one of many
outputs

9/4/2007 EECS 150, Fa07, Lec 03-fpga 46

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

A Z
0 I0
1 I1

I1 I0 A Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Z = A' I0 + A I1

Multiplexers/Selectors – a logical function

• Multiplexers/Selectors: general concept
– 2n data inputs, n control inputs (called "selects"), 1 output
– Used to connect 2n points to a single point
– Control signal pattern forms binary index of input connected

to output

9/4/2007 EECS 150, Fa07, Lec 03-fpga 47

• 2:1 mux: Z = A' I0 + A I1
• 4:1 mux: Z = A' B' I0 + A' B I1 + A B' I2 + A B I3
• 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +

AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7
• In general, Z = Σ (mkIk)

– in minterm shorthand form for a 2n:1 Mux

2 -1

I0
I1
I2
I3
I4
I5
I6
I7

A B C

8:1
mux

ZI0
I1
I2
I3

A B

4:1
mux ZI0

I1

A

2:1
mux Z

k=0

n

Multiplexers/Selectors: to implement logic

9/4/2007 EECS 150, Fa07, Lec 03-fpga 48

control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading Multiplexers

• Large multiplexers implemented by cascading smaller
ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

9/4/2007 EECS 150, Fa07, Lec 03-fpga 49CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

F

Multiplexers as Lookup Tables (LUTs)

• 2n:1 multiplexer implements any function of n
variables
– With the variables used as control inputs and
– Data inputs tied to 0 or 1
– In essence, a lookup table

• Example:
– F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C') + A'B(C') + AB'(0) + AB(1)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 50

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0
1
2
3

4:1 MUX

C'
C'
0
1

F

CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

Multiplexers as LUTs (cont’d)
• 2n-1:1 mux can implement any function of n

variables
– With n-1 variables used as control inputs and
– Data inputs tied to the last variable or its complement

• Example:
– F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C') + A'B(C') + AB'(0) + AB(1)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 51

LUT as general logic gate
• An n-lut as a direct

implementation of a function
truth-table.

• Each latch location holds the
value of the function
corresponding to one input
combination.

0000 F(0,0,0,0)
0001 F(0,0,0,1)
0010 F(0,0,1,0)
0011 F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS
store in 1st latch
store in 2nd latch

Example: 4-lut

Example: 2-lut
ORANDINPUTS

11 1 1
10 0 1
01 0 1
00 0 0

Implements any function of 2 inputs.

How many of these are there?
How many functions of n inputs?

9/4/2007 EECS 150, Fa07, Lec 03-fpga 52

4-LUT Implementation
• n-bit LUT is implemented as a

2n x 1 memory:
– inputs choose one of 2n memory

locations.
– memory locations (latches) are

normally loaded with values from
user’s configuration bit stream.

– Inputs to mux control are the CLB
inputs.

• Result is a general purpose
“logic gate”.

– n-LUT can implement any function
of n inputs!

latch

latch

latch

latch

16 x 1
mux

16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream

9/4/2007 EECS 150, Fa07, Lec 03-fpga 53

FPGA Generic Design Flow

• Design Entry:
– Create your design files using:

» schematic editor or
» hardware description language (Verilog, VHDL)

• Design “implementation” on FPGA:
– Partition, place, and route to create bit-stream file

• Design verification:
– Use Simulator to check function,
– other software determines max clock frequency.
– Load onto FPGA device (cable connects PC to development board)

» check operation at full speed in real environment.

9/4/2007 EECS 150, Fa07, Lec 03-fpga 54

Example Partition, Placement, and
Route

• Example Circuit:
– collection of gates and flip-flops

• Idealized FPGA structure:

Circuit combinational logic must be “covered” by 4-input 1-output “gates”.
Flip-flops from circuit must map to FPGA flip-flops.
(Best to preserve “closeness” to CL to minimize wiring.)
Placement in general attempts to minimize wiring.

9/4/2007 EECS 150, Fa07, Lec 03-fpga 55

Xilinx Virtex-E Floorplan

Block RAM

• 4096 bits each

• every 12 CLB columns

Input/Output
Blocks

• combinational,
latch, and
flipflop output

• sampled
inputs

Configurable Logic Blocks

• 4-input function gens

• buffers

• flipflop

9/4/2007 EECS 150, Fa07, Lec 03-fpga 56

Virtex-E Configurable Logic Block (CLB)
CLB = 4 logic cells (LC) in two slices
LC: 4-input function generator, carry logic, storage ele’t
80 x 120 CLB array on 2000E

16x1 synchronous RAM FF or latch

9/4/2007 EECS 150, Fa07, Lec 03-fpga 57

Details of Virtex-E Slice

LUT

•4-input fun

•16x1 sram

•32x1 or 16x2 in slice

•16 bit shift register

Storage element

• D flipflip

• latch

Combinational outputs

5 and 6 input functions

Carry chain

• arithmetic along row
or col

9/4/2007 EECS 150, Fa07, Lec 03-fpga 58

Xilinx FPGAs (interconnect detail)

9/4/2007 EECS 150, Fa07, Lec 03-fpga 59

Virtex-E Input/Output block (IOB) detail

Many I/O signaling stds

D FF or latch

3-state output buf

9/4/2007 EECS 150, Fa07, Lec 03-fpga 60

Virtex-E Family of Parts

9/4/2007 EECS 150, Fa07, Lec 03-fpga 61

Xilinx FPGAs
• How they differ from idealized array:

– In addition to their use as general logic “gates”, LUTs can
alternatively be used as general purpose RAM.

» Each 4-lut can become a 16x1-bit RAM array.
– Special circuitry to speed up “ripple carry” in adders and

counters.
» Therefore adders assembled by the CAD tools operate

much faster than adders built from gates and luts alone.
– Many more wires, including tri-state capabilities.

9/4/2007 EECS 150, Fa07, Lec 03-fpga 62

Summary
• Logic design process influenced by available

technology AND economic drivers
– Volume, Time to Market, Costs, Power

• Fundamental understanding of digital design
techniques carry over

– Specifics on design trade-offs and implementation differ

• FPGA offer a valuable new sweet spot
– Low TTM, medium cost, tremendous flexibility

• Fundamentally tied to powerful CAD tools
• Build everything (simple or complex) from one

set of building blocks
– LUTs + FF + routing + storage + IOs

