
8/30/2007 EECS150-F05 CMOS lec02 1© UC Berkeley

EECS 150 - Components and Design
Techniques for Digital Systems

Lec 02 – Gates and CMOS Technology
8-30-07

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

8/30/2007 EECS150-F05 CMOS lec02 2© UC Berkeley

Outline

• Summary of last time
• Overview of Physical Implementations
• Boolean Logic
• CMOS devices
• Combinational Logic
• Announcements/Break
• CMOS transistor circuits

– basic logic gates
– tri-state buffers
– flip-flops

» flip-flop timing basics
» example use
» circuits

8/30/2007 EECS150-F05 CMOS lec02 3© UC Berkeley

L01 Summary: Digital Design
Given a functional description and performance, cost, & power

constraints, come up with an implementation using a set of
primitives.

• How do we learn how to do this?
1. Learn about the primitives and how to generate them.
2. Learn about design representation.
3. Learn formal methods to optimally manipulate the representations.
4. Look at design examples.
5. Use trial and error - CAD tools and prototyping.

• Digital design is in some ways more an art than a
science. The creative spirit is critical in combining
primitive elements & other components in new ways to
achieve a desired function.

• However, unlike art, we have objective measures of a
design: performance cost power & Time to Market

8/30/2007 EECS150-F05 CMOS lec02 4© UC Berkeley

The Boolean Abstraction

8/30/2007 EECS150-F05 CMOS lec02 5© UC Berkeley

Technology State 0 State 1

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitorCharged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

Mapping from physical world to binary
world

Sense the logical value, manipulate in s systematic fashion.

8/30/2007 EECS150-F05 CMOS lec02 6© UC Berkeley

X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X
Y F

X Y

X nor Y
not (X or Y)

X nand Y
not (X and Y)

10 not X
X and Y

X or Y

not YX xor Y X = Y

Possible Logic Functions of Two Variables

• 16 possible functions of 2 input variables:
– 2**(2**n) functions of n inputs

8/30/2007 EECS150-F05 CMOS lec02 7© UC Berkeley

X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' Y' X • Y X' • Y' (X • Y) + (X' • Y')
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X • Y) + (X' • Y') ≡ X = Y

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is
true when the variables X
and Y have the same value
and false, otherwise

Logic Functions and Boolean Algebra
• Any logic function that can be expressed as a

truth table can be written as an expression in
Boolean algebra using the operators: ', +, and •

8/30/2007 EECS150-F05 CMOS lec02 8© UC Berkeley

X Y X nand Y
0 0 1

1 1 0

X Y X nor Y
0 0 1

1 1 0

X nand Y ≡ not ((not X) nor (not Y))
X nor Y ≡ not ((not X) nand (not Y))

Minimal set of functions
• Implement any logic functions from NOT, NOR, and

NAND?
– For example, implementing X and Y

is the same as implementing not (X nand Y)

• Do it with only NOR or only NAND
– NOT is just a NAND or a NOR with both inputs tied together

– and NAND and NOR are "duals", i.e., easy to implement one using
the other

8/30/2007 EECS150-F05 CMOS lec02 9© UC Berkeley

time

change in Y takes time to "propagate" through gates

Waveform View of Logic Functions
• Just a sideways truth table

– But note how edges don't line up exactly
– It takes time for a gate to switch its output!

8/30/2007 EECS150-F05 CMOS lec02 10© UC Berkeley

T1

T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean Expressions to Logic Gates
• More than one way to map expressions to

gates

– e.g., Z = A' • B' • (C + D) = (A' • (B' • (C + D)))

8/30/2007 EECS150-F05 CMOS lec02 11© UC Berkeley

(X + Y)' = X' • Y'
NOR is equivalent to AND
with inputs complemented

(X • Y)' = X' + Y'
NAND is equivalent to OR
with inputs complemented

X Y X' Y' (X + Y)' X' • Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X' Y' (X • Y)' X' + Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)
• De Morgan’s Law

– complete truth table, exhaustive proof

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0

=

=
Push inv. bubble from output to input and change symbol

8/30/2007 EECS150-F05 CMOS lec02 12© UC Berkeley

An algebraic structure

• An algebraic structure consists of
– a set of elements B
– binary operations { + , • }
– and a unary operation { ' }
– such that the following axioms hold:

1. set B contains at least two elements, a, b, such that a ≠ b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a' = 1 a • a' = 0

More on th
is later

8/30/2007 EECS150-F05 CMOS lec02 13© UC Berkeley

Technology State “0” State “1”

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitorCharged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

Mapping from physical world to
binary world

Sense the logical value, manipulate in s systematic fashion.

8/30/2007 EECS150-F05 CMOS lec02 14© UC Berkeley

Overview of Physical Implementations

• Integrated Circuits (ICs)
– Combinational logic circuits, memory elements, analog interfaces.

• Printed Circuits boards (PCBs)
– substrate for ICs and interconnection, distribution of CLK, Vdd, and

GND signals, heat dissipation.
• Power Supplies

– Converts line AC voltage to regulated DC low voltage levels.
• Chassis (rack, card case, ...)

– holds boards, power supply, provides physical interface to user or
other systems.

• Connectors and Cables.

The stuff out of which we make systems.

8/30/2007 EECS150-F05 CMOS lec02 15© UC Berkeley

Integrated Circuits
• Primarily Crystalline Silicon
• 1mm - 25mm on a side
• 100 - 200M transistors
• (25 - 50M “logic gates")
• 3 - 10 conductive layers
• 2002 - feature size ~ 0.13um = 0.13 x 10-6 m
• “CMOS” most common -

complementary metal oxide
semiconductor

• Package provides:
– spreading of chip-level signal paths to

board-level
– heat dissipation.

• Ceramic or plastic with gold wires.

Chip in Package

8/30/2007 EECS150-F05 CMOS lec02 16© UC Berkeley

Printed Circuit Boards

• fiberglass or ceramic
• 1-20 conductive layers
• 1-20in on a side
• IC packages are soldered

down.

Multichip Modules (MCMs)
• Multiple chips directly connected to a substrate. (silicon, ceramic,

plastic, fiberglass) without chip packages.

8/30/2007 EECS150-F05 CMOS lec02 17© UC Berkeley

Integrated Circuits
• Moore’s Law has fueled innovation for the last 3

decades.

• “Number of transistors on a die doubles every 18
months.”

• What are the side effects of Moore’s law? 8/30/2007 EECS150-F05 CMOS lec02 18© UC Berkeley

Integrated Circuits
• Uses for digital IC technology today:

– standard microprocessors
» used in desktop PCs, and embedded applications
» simple system design (mostly software development)

– memory chips (DRAM, SRAM)
– application specific ICs (ASICs)

» custom designed to match particular application
» can be optimized for low-power, low-cost, high-performance
» high-design cost / relatively low manufacturing cost

– field programmable logic devices (FPGAs, CPLDs)
» customized to particular application after fabrication
» short time to market
» relatively high part cost

– standardized low-density components
» still manufactured for compatibility with older system designs

8/30/2007 EECS150-F05 CMOS lec02 19© UC Berkeley

close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

Recall: Switches: basic element of
physical implementations

• Implementing a simple circuit (arrow shows action if
wire changes to “1”):

Z ≡ A

A
Z

8/30/2007 EECS150-F05 CMOS lec02 20© UC Berkeley

CMOS Devices

Cross Section

The gate acts like a capacitor. A high
voltage on the gate attracts charge into
the channel. If a voltage exists between
the source and drain a current will flow.
In its simplest approximation the device
acts like a switch.

Top View
• MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

nFET

pFET

8/30/2007 EECS150-F05 CMOS lec02 21© UC Berkeley

n-channel
open when voltage at G is low

closes when:
voltage(G) > voltage (S) + ε

p-channel
closed when voltage at G is low

opens when:
voltage(G) < voltage (S) – ε

What’s Complementary about CMOS

• CMOS devices work in pairs
• Three terminals: drain, gate, and source

– Switch action:
if voltage on gate terminal is (some amount)
higher/lower than source terminal then conducting path
established between drain and source terminals

G

S D

G

S D

8/30/2007 EECS150-F05 CMOS lec02 22© UC Berkeley

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X
Y

X
Y Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y' + X' Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X' Y'
X and Y are the same

("equality", "coincidence")

Building back up to our Boolean Abstraction

• NAND

• NOR

• XOR
X ⊕ Y

• XNOR
X = Y

8/30/2007 EECS150-F05 CMOS lec02 23© UC Berkeley

Transistor-level Logic Circuits (inv)
• Inverter (NOT gate): Vdd

Gnd

Vdd

Gnd0 volts

in out

3 volts

what is the
relationship

between in and out?

8/30/2007 EECS150-F05 CMOS lec02 24© UC Berkeley

Logical Values

• Threshold
– Logical 1 (true) : V > Vdd –V th
– Logical 0 (false) : V < Vth

• Noise margin?

V

+3

0

Logic 1

Logic 0

Vout

+3

0

Logic 0
Input Voltage

Logic 1
Input Voltage

Vin
+5

F

in out

T

T

F

not(out, in)

8/30/2007 EECS150-F05 CMOS lec02 25© UC Berkeley

Big idea: Self-restoring logic

• CMOS logic gates are self-restoring
– Even if the inputs are imperfect, switching time is fast

and outputs go rail to rail
– Doesn’t matter how many you cascade

» Although propagation delay increases

• Manage fan-out to ensure sharp and
complete transition

8/30/2007 EECS150-F05 CMOS lec02 26© UC Berkeley

Element of Time

• Logical change is not instantaneous
• Broader digital design methodology has to make it appears

as such
– Clocking, delay estimation, glitch avoidance

Vout

+3

0
T

Propagation delay

8/30/2007 EECS150-F05 CMOS lec02 27© UC Berkeley

Announcements
Reading assignment for this week.

Katz and Boriello, Chap 1
K&B 2.1-2.3, pp. 155-172

Homework 1 is posted - due week from friday

8/30/2007 EECS150-F05 CMOS lec02 28© UC Berkeley

AND

OR

Z ≡ A and B

Z ≡ A or B

A B

A

B

Computing with Switches
• Compose switches into more complex

functions:

Two fundamental structures: series (AND) and parallel (OR)

8/30/2007 EECS150-F05 CMOS lec02 29© UC Berkeley

Transistor-level Logic Circuits - NAND

• Inverter (NOT gate): • NAND gate

• Logic Function:
– out = 0 iff both a AND b = 1

therefore out = (ab)’
– pFET network and nFET

network are duals of one
another.

How about AND gate?

a b out

0 0 1

0 1 1

1 0 1

1 1 0

nand (out, a, b)

8/30/2007 EECS150-F05 CMOS lec02 30© UC Berkeley

Transistor-level Logic Circuits

• nFET is used only to pass logic zero.
• pFet is used only to pass logic one.
• For example, NAND gate:

Simple rule for wiring up MOSFETs:

Note: This rule is sometimes violated
by expert designers under special conditions.

8/30/2007 EECS150-F05 CMOS lec02 31© UC Berkeley

Transistor-level Logic Circuits - NOR
• NAND gate • NOR gate

• Function:
– out = 0 iff both a OR b = 1 therefore

out = (a+b)’
– Again pFET network and nFET

network are duals of one another.
– Other more complex functions are

possible. Ex: out = (a+bc)’

a b out

0 0 1

0 1 0

1 0 0

1 1 0

nor (out, a, b)

8/30/2007 EECS150-F05 CMOS lec02 32© UC Berkeley

Transistor-level Logic Circuits
• Transistor circuit for

inverting tri-state buffer:
“high impedance”
(output disconnected)

• Variations

• Tri-state Buffer

“transmission gate”Inverting buffer Inverted enable

Tri-state buffers are used when multiple circuits all connect to a common bus.
Only one circuit at a time is allowed to drive the bus. All others “disconnect”.

8/30/2007 EECS150-F05 CMOS lec02 33© UC Berkeley

Transmission Gate
• Transmission gates are the way to build “switches” in

CMOS.
• Both transistor types are needed:

– nFET to pass zeros.
– pFET to pass ones.

• The transmission gate is bi-directional (unlike logic gates
and tri-state buffers).

• Functionally it is similar to the tri-state buffer, but does
not connect to Vdd and GND, so must be combined with
logic gates or buffers.

Is it self restoring?
8/30/2007 EECS150-F05 CMOS lec02 34© UC Berkeley

Transistor-level Logic Circuits - MUX
• Multiplexor

If s=1 then c=a else c=b

• Transistor Circuit for
inverting multiplexor:

8/30/2007 EECS150-F05 CMOS lec02 35© UC Berkeley

Transistor-level Logic Circuits - MUX
• Multiplexor

If s=1 then c=a else c=b

• Transistor Circuit for
inverting multiplexor:

8/30/2007 EECS150-F05 CMOS lec02 36© UC Berkeley

Interactive Quiz
mux (c, s, a, b)• Generate truth table for MUX

• Boolean expression?
• Can you build an inverter out

of a MUX?
• How about AND?

c

universality

8/30/2007 EECS150-F05 CMOS lec02 37© UC Berkeley

inputs outputssystem

Combinational vs. Sequential Digital
Circuits

• Simple model of a digital system is a unit
with inputs and outputs:

• Combinational means "memory-less"
– Digital circuit is combinational if its output values

only depend on its inputs

8/30/2007 EECS150-F05 CMOS lec02 38© UC Berkeley

Sequential logic

• Sequential systems
– Exhibit behaviors (output values) that depend

on current as well as previous inputs

• All real circuits are sequential
– Outputs do not change instantaneously after an input change
– Why not, and why is it then sequential?

• Fundamental abstraction of digital design is to reason
(mostly) about steady-state behaviors
– Examine outputs only after sufficient time has elapsed for the

system to make its required changes and settle down

8/30/2007 EECS150-F05 CMOS lec02 39© UC Berkeley

Synchronous sequential digital
systems
• Combinational circuit outputs depend only on

current inputs
– After sufficient time has elapsed

• Sequential circuits have memory
– Even after waiting for transient activity to finish

• Steady-state abstraction: most designers use it
when constructing sequential circuits:
– Memory of system is its state
– Changes in system state only allowed at specific times

controlled by an external periodic signal (the clock)
– Clock period is elapsed time between state changes

sufficiently long so that system reaches steady-state before
next state change at end of period

8/30/2007 EECS150-F05 CMOS lec02 40© UC Berkeley

Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk

8/30/2007 EECS150-F05 CMOS lec02 41© UC Berkeley

D-type edge-triggered flip-flop

• The edge of the clock is used
to sample the "D" input &
send it to "Q” (positive edge
triggering).

– At all other times the output Q is
independent of the input D (just
stores previously sampled value).

– The input must be stable for a
short time before the clock edge.

01 01 010

8/30/2007 EECS150-F05 CMOS lec02 42© UC Berkeley

Parallel to Serial Converter Example

• 4-bit version:

• Operation:
– cycle 1: load x, output x0

– cycle i: output xi

if LD=1
load FF from xi
else from previous stage.

• Each stage:

8/30/2007 EECS150-F05 CMOS lec02 43© UC Berkeley

Parallel to Serial Converter Example

• 4-bit version:

• Operation:
– cycle 1: load x, output x0

– cycle i: output xi

if LD=1
load FF from xi
else from previous stage.

• Each stage:

X3 X2 X1 X0X3 X2 X1 X0

8/30/2007 EECS150-F05 CMOS lec02 44© UC Berkeley

Parallel to Serial Converter Example

• timing:

8/30/2007 EECS150-F05 CMOS lec02 45© UC Berkeley

Transistor-level Logic Circuits - Latch

• Positive Level-sensitive
latch

• Transistor Level • Positive Edge-triggered
flip-flop built from two
level-sensitive latches:

clk’

clk

clk

clk’

D FlipFlop

8/30/2007 EECS150-F05 CMOS lec02 46© UC Berkeley

scope of CS 150

Summary: Representation of digital
designs

• Physical devices (transistors, relays)
• Switches
• Truth tables
• Boolean algebra
• Gates
• Waveforms
• Finite state behavior
• Register-transfer behavior
• Concurrent abstract specifications

more depth than 61C

focus on building systems

8/30/2007 EECS150-F05 CMOS lec02 47© UC Berkeley

Axioms & theorems of Boolean algebra
• Identity

1. X + 0 = X 1D. X • 1 = X

• Null
2. X + 1 = 1 2D. X • 0 = 0

• Idempotency:
3. X + X = X 3D. X • X = X

• Involution:
4. (X')' = X

• Complementarity:
5. X + X' = 1 5D. X • X' = 0

• Commutativity:
6. X + Y = Y + X 6D. X • Y = Y • X

• Associativity:
7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

8/30/2007 EECS150-F05 CMOS lec02 48© UC Berkeley

Axioms and theorems of Boolean algebra
(cont’d)
• Distributivity:

8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)
• Uniting:

9. X • Y + X • Y' = X 9D. (X + Y) • (X + Y') = X
• Absorption:

10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y') • Y = X • Y 11D. (X • Y') + Y = X + Y

• Factoring:
12. (X + Y) • (X' + Z) = 12D. X • Y + X' • Z =

X • Z + X' • Y (X + Z) • (X' + Y)
• Concensus:

13. (X • Y) + (Y • Z) + (X' • Z) = 13D. (X + Y) • (Y + Z) • (X' + Z) =
X • Y + X' • Z (X + Y) • (X' + Z)

8/30/2007 EECS150-F05 CMOS lec02 49© UC Berkeley

Axioms and theorems of Boolean algebra
(cont’)

• de Morgan's:
14. (X + Y + ...)' = X' • Y' • ... 14D. (X • Y • ...)' = X' + Y' + ...

• generalized de Morgan's:
15. f'(X1,X2,...,Xn,0,1,+,•) = f(X1',X2',...,Xn',1,0,•,+)

• establishes relationship between • and +

8/30/2007 EECS150-F05 CMOS lec02 50© UC Berkeley

Axioms & theorems of Bool. Alg. - Duality

• Duality
– Dual of a Boolean expression is derived by replacing • by +, + by •,

0 by 1, and 1 by 0, and leaving variables unchanged
– Any theorem that can be proven is thus also proven for its dual!
– Meta-theorem (a theorem about theorems)

• duality:
16. X + Y + ... ⇔ X • Y • ...

• generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

• Different than deMorgan’s Law
– this is a statement about theorems
– this is not a way to manipulate (re-write) expressions

8/30/2007 EECS150-F05 CMOS lec02 51© UC Berkeley

Proving theorems (rewriting)
• Using the axioms of Boolean algebra:

– e.g., prove the theorem: X • Y + X • Y' = X

– e.g., prove the theorem: X + X • Y = X

distributivity (8) X • Y + X • Y' = X • (Y + Y')
complementarity (5) X • (Y + Y') = X • (1)
identity (1D) X • (1) = X

identity (1D) X + X • Y = X • 1 + X • Y
distributivity (8) X • 1 + X • Y = X • (1 + Y)
identity (2) X • (1 + Y) = X • (1)
identity (1D) X • (1) = X

