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L01 Summary: Digital Design
Given a functional description and performance, cost, & power 

constraints, come up with an implementation using a set of 
primitives. 

• How do we learn how to do this? 
1. Learn about the primitives and how to generate them. 
2. Learn about design representation. 
3. Learn formal methods to optimally manipulate the representations. 
4. Look at design examples. 
5. Use trial and error - CAD tools and prototyping. 

• Digital design is in some ways more an art than a 
science. The creative spirit is critical in combining 
primitive elements & other components in new ways to 
achieve a desired function.

• However, unlike art, we have objective measures of a 
design:    performance   cost   power & Time to Market
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The Boolean Abstraction
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Technology State 0 State 1

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitorCharged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

Mapping from physical world to binary 
world

Sense the logical value, manipulate in s systematic fashion.
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X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X
Y F

X Y

X nor Y
not (X or Y)

X nand Y
not (X and Y)

10 not X
X and Y

X or Y

not YX xor Y X = Y

Possible Logic Functions of Two Variables

• 16 possible functions of 2 input variables:
– 2**(2**n) functions of n inputs
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X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' Y' X • Y X' • Y' ( X • Y ) + ( X' • Y' )
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

( X • Y ) + ( X' • Y' )  ≡ X = Y

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is 
true when the variables X 
and Y have the same value
and false, otherwise

Logic Functions and Boolean Algebra
• Any logic function that can be expressed as a 

truth table can be written as an expression in 
Boolean algebra using the operators: ', +, and •
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X Y X nand Y
0 0 1

1 1 0

X Y X nor Y
0 0 1

1 1 0

X nand Y ≡ not (  (not X) nor (not Y)  )
X nor Y ≡ not ( (not X) nand (not Y) )

Minimal set of functions
• Implement any logic functions from NOT, NOR, and 

NAND?
– For example, implementing          X and Y

is the same as implementing   not (X nand Y)

• Do it with only NOR or only NAND
– NOT is just a NAND or a NOR with both inputs tied together

– and NAND and NOR are "duals", i.e., easy to implement one using 
the other
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time

change in Y takes time to "propagate" through gates

Waveform View of Logic Functions
• Just a sideways truth table

– But note how edges don't line up exactly
– It takes time for a gate to switch its output!
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T1

T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean Expressions to Logic Gates
• More than one way to map expressions to 

gates

– e.g.,  Z = A' • B' • (C + D) = (A' • (B' • (C + D)))
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(X + Y)' = X' • Y'
NOR is equivalent to AND 
with inputs complemented

(X • Y)' = X' + Y'
NAND is equivalent to OR 
with inputs complemented

X Y X' Y' (X + Y)' X' • Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X' Y' (X • Y)' X' + Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)
• De Morgan’s Law

– complete truth table, exhaustive proof

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0

=

=
Push inv. bubble from output to input and change symbol
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An algebraic structure

• An algebraic structure consists of
– a set of elements B
– binary operations { + , • }
– and a unary operation { ' }
– such that the following axioms hold:

1. set B contains at least two elements, a, b, such that a ≠ b
2. closure: a + b   is in B a • b   is in B
3. commutativity:   a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c)   a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a' = 1 a • a' = 0

More on th
is later
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Technology State “0” State “1”

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitorCharged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

Mapping from physical world to 
binary world

Sense the logical value, manipulate in s systematic fashion.
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Overview of Physical Implementations

• Integrated Circuits (ICs)
– Combinational logic circuits, memory elements, analog interfaces. 

• Printed Circuits boards (PCBs) 
– substrate for ICs and interconnection, distribution of CLK, Vdd, and 

GND signals, heat dissipation. 
• Power Supplies

– Converts line AC voltage to regulated DC low voltage levels. 
• Chassis (rack, card case, ...) 

– holds boards, power supply, provides physical interface to user or 
other systems. 

• Connectors and Cables. 

The stuff out of which we make systems.
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Integrated Circuits
• Primarily Crystalline Silicon
• 1mm - 25mm on a side
• 100 - 200M transistors
• (25 - 50M “logic gates")
• 3 - 10 conductive layers
• 2002 - feature size ~ 0.13um = 0.13 x 10-6 m 
• “CMOS” most common -

complementary metal oxide 
semiconductor

• Package provides:
– spreading of chip-level signal paths to 

board-level                  
– heat dissipation. 

• Ceramic or plastic with gold wires. 

Chip in Package
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Printed Circuit Boards

• fiberglass or ceramic
• 1-20 conductive layers 
• 1-20in on a side 
• IC packages are soldered 

down.

Multichip Modules (MCMs)
• Multiple chips directly connected to a substrate. (silicon, ceramic, 

plastic, fiberglass) without chip packages.
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Integrated Circuits
• Moore’s Law has fueled innovation for the last 3 

decades.

• “Number of transistors on a die doubles every 18 
months.”

• What are the side effects of Moore’s law? 8/30/2007 EECS150-F05 CMOS lec02 18© UC Berkeley

Integrated Circuits
• Uses for digital IC technology today:

– standard microprocessors
» used in desktop PCs, and embedded applications
» simple system design (mostly software development)

– memory chips (DRAM, SRAM)
– application specific ICs (ASICs)

» custom designed to match particular application
» can be optimized for low-power, low-cost, high-performance
» high-design cost / relatively low manufacturing cost

– field programmable logic devices (FPGAs, CPLDs)
» customized to particular application after fabrication
» short time to market
» relatively high part cost

– standardized low-density components
» still manufactured for compatibility with older system designs
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close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

Recall: Switches: basic element of 
physical implementations

• Implementing a simple circuit (arrow shows action if 
wire changes to “1”):

Z  ≡ A

A
Z
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CMOS Devices

Cross Section

The gate acts like a capacitor. A high 
voltage on the gate attracts charge into 
the channel. If a voltage exists between 
the source and drain a current will flow. 
In its simplest approximation the device 
acts like a switch.

Top View
• MOSFET (Metal Oxide Semiconductor Field Effect Transistor). 

nFET

pFET
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n-channel
open when voltage at G is low

closes when:
voltage(G) > voltage (S) + ε

p-channel
closed when voltage at G is low

opens when:
voltage(G) < voltage (S) – ε

What’s Complementary about CMOS

• CMOS devices work in pairs
• Three terminals: drain, gate, and source

– Switch action:
if voltage on gate terminal is (some amount) 
higher/lower than source terminal then conducting path 
established between drain and source terminals

G

S D

G

S D
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X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X
Y

X
Y Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y' + X' Y
X or Y but not both 

("inequality", "difference")

X xnor Y = X Y + X' Y'
X and Y are the same 

("equality", "coincidence")

Building back up to our Boolean Abstraction

• NAND

• NOR

• XOR
X ⊕ Y

• XNOR
X = Y
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Transistor-level Logic Circuits (inv)
• Inverter (NOT gate): Vdd

Gnd

Vdd

Gnd0 volts

in out

3 volts

what  is the 
relationship 

between in and out?
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Logical Values

• Threshold
– Logical 1 (true) : V > Vdd –V th
– Logical 0 (false) : V < Vth

• Noise margin?

V

+3

0

Logic 1

Logic 0

Vout

+3

0

Logic 0
Input Voltage

Logic 1
Input Voltage

Vin
+5

F

in out

T

T

F

not( out, in) 
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Big idea: Self-restoring logic

• CMOS logic gates are self-restoring
– Even if the inputs are imperfect, switching time is fast 

and outputs go rail to rail
– Doesn’t matter how many you cascade

» Although propagation delay increases

• Manage fan-out to ensure sharp and 
complete transition
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Element of Time

• Logical change is not instantaneous
• Broader digital design methodology has to make it appears 

as such
– Clocking, delay estimation, glitch avoidance

Vout

+3

0
T

Propagation delay
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Announcements
Reading assignment for this week.

Katz and Boriello, Chap 1
K&B 2.1-2.3, pp. 155-172 

Homework 1 is posted - due week from friday
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AND

OR

Z ≡ A and B

Z ≡ A or B 

A B

A

B

Computing with Switches
• Compose switches into more complex  

functions:

Two fundamental structures: series (AND) and parallel (OR)
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Transistor-level Logic Circuits - NAND

• Inverter (NOT gate): • NAND gate

• Logic Function: 
– out = 0 iff both a AND b = 1 

therefore out = (ab)’
– pFET network and nFET

network are duals of one 
another.

How about AND gate?

a  b      out

0  0       1

0  1       1

1   0      1

1   1      0

nand (out, a, b)
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Transistor-level Logic Circuits

• nFET is used only to pass logic zero.
• pFet is used only to pass logic one.
• For example, NAND gate:

Simple rule for wiring up MOSFETs: 

Note: This rule is sometimes violated 
by expert designers under special conditions. 
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Transistor-level Logic Circuits - NOR
• NAND gate • NOR gate

• Function: 
– out = 0 iff both a OR b = 1 therefore 

out = (a+b)’
– Again pFET network and nFET

network are duals of one another.
– Other more complex functions are 

possible.  Ex: out = (a+bc)’

a  b      out

0  0       1

0  1       0

1   0      0

1   1      0

nor (out, a, b)
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Transistor-level Logic Circuits
• Transistor circuit for 

inverting tri-state buffer:
“high impedance”
(output disconnected)

• Variations

• Tri-state Buffer

“transmission gate”Inverting buffer Inverted enable

Tri-state buffers are used when multiple circuits all connect to a common bus.
Only one circuit at a time is allowed to drive the bus.  All others “disconnect”.
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Transmission Gate
• Transmission gates are the way to build “switches” in 

CMOS.  
• Both transistor types are needed:

– nFET to pass zeros.
– pFET to pass ones.

• The transmission gate is bi-directional (unlike logic gates 
and tri-state buffers).

• Functionally it is similar to the tri-state buffer, but does 
not connect to Vdd and GND, so must be combined with 
logic gates or buffers.

Is it self restoring?
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Transistor-level Logic Circuits - MUX
• Multiplexor

If s=1 then c=a else c=b

• Transistor Circuit for 
inverting multiplexor:
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Transistor-level Logic Circuits - MUX
• Multiplexor

If s=1 then c=a else c=b

• Transistor Circuit for 
inverting multiplexor:
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Interactive Quiz
mux (c, s, a, b)• Generate truth table for MUX

• Boolean expression?
• Can you build an inverter out 

of a MUX?
• How about AND?

c

universality
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inputs outputssystem

Combinational vs. Sequential Digital 
Circuits

• Simple model of a digital system is a unit 
with inputs and outputs:

• Combinational means "memory-less"
– Digital circuit is combinational if its output values

only depend on its inputs
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Sequential logic

• Sequential systems
– Exhibit behaviors (output values) that depend 

on current as well as previous inputs

• All real circuits are sequential
– Outputs do not change instantaneously after an input change
– Why not, and why is it then sequential?

• Fundamental abstraction of digital design is to reason 
(mostly) about steady-state behaviors
– Examine outputs only after sufficient time has elapsed for the 

system to make its required changes and settle down
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Synchronous sequential digital 
systems
• Combinational circuit outputs depend only on 

current inputs
– After sufficient time has elapsed

• Sequential circuits have memory
– Even after waiting for transient activity to finish

• Steady-state abstraction: most designers use it 
when constructing sequential circuits:
– Memory of system is its state
– Changes in system state only allowed at specific times 

controlled by an external periodic signal (the clock)
– Clock period is elapsed time between state changes

sufficiently long so that system reaches steady-state before 
next state change at end of period
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Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk
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D-type edge-triggered flip-flop

• The edge of the clock is used 
to sample the "D" input & 
send it to "Q” (positive edge 
triggering). 

– At all other times the output Q is 
independent of the input D (just 
stores previously sampled value). 

– The input must be stable for a 
short time before the clock edge. 

01 01 010

8/30/2007 EECS150-F05 CMOS lec02 42© UC Berkeley

Parallel to Serial Converter Example

• 4-bit version:

• Operation:
– cycle 1: load x, output x0

– cycle i: output xi

if LD=1 
load FF from xi
else from previous stage.

• Each stage:
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Parallel to Serial Converter Example

• 4-bit version:

• Operation:
– cycle 1: load x, output x0

– cycle i: output xi

if LD=1 
load FF from xi
else from previous stage.

• Each stage:

X3 X2 X1 X0X3 X2 X1 X0
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Parallel to Serial Converter Example

• timing:
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Transistor-level Logic Circuits - Latch

• Positive Level-sensitive 
latch

• Transistor Level • Positive Edge-triggered 
flip-flop built from two 
level-sensitive latches:

clk’

clk

clk

clk’

D FlipFlop
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scope of CS 150

Summary: Representation of digital 
designs

• Physical devices (transistors,  relays)
• Switches
• Truth tables
• Boolean algebra
• Gates
• Waveforms
• Finite state behavior
• Register-transfer behavior
• Concurrent abstract specifications

more depth than 61C

focus on building systems
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Axioms & theorems of Boolean algebra
• Identity

1.   X + 0 = X 1D.   X • 1 = X

• Null
2.   X + 1 = 1 2D.   X • 0 = 0

• Idempotency:
3.   X + X = X 3D.   X • X = X

• Involution:
4.   (X')' = X

• Complementarity:
5.   X + X' = 1 5D.   X • X' = 0

• Commutativity:
6.   X + Y = Y + X 6D.   X • Y = Y • X

• Associativity:
7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)
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Axioms and theorems of Boolean algebra 
(cont’d)
• Distributivity:

8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)
• Uniting:

9.   X • Y + X • Y' = X 9D.   (X + Y) • (X + Y') = X
• Absorption:

10. X + X • Y = X 10D.  X • (X + Y) = X
11. (X + Y') • Y = X • Y 11D.  (X • Y') + Y = X + Y

• Factoring:
12. (X + Y) • (X' + Z) = 12D. X • Y + X' • Z = 

X • Z + X' • Y (X + Z) • (X' + Y)
• Concensus:

13. (X • Y) + (Y • Z) + (X' • Z) =  13D. (X + Y) • (Y + Z) • (X' + Z) =
X • Y + X' • Z (X + Y) • (X' + Z)
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Axioms and theorems of Boolean algebra 
(cont’)

• de Morgan's:
14. (X + Y + ...)' = X' • Y' • ... 14D. (X • Y • ...)' = X' + Y' + ...

• generalized de Morgan's:
15. f'(X1,X2,...,Xn,0,1,+,•) =  f(X1',X2',...,Xn',1,0,•,+)

• establishes relationship between • and +
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Axioms & theorems of Bool. Alg. - Duality

• Duality
– Dual of a Boolean expression is derived by replacing • by +, + by •, 

0 by 1, and 1 by 0, and leaving variables unchanged
– Any theorem that can be proven is thus also proven for its dual!
– Meta-theorem (a theorem about theorems) 

• duality:
16. X + Y + ... ⇔ X • Y • ...

• generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

• Different than deMorgan’s Law
– this is a statement about theorems
– this is not a way to manipulate (re-write) expressions
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Proving theorems (rewriting)
• Using the axioms of Boolean algebra:

– e.g., prove the theorem: X • Y + X • Y' =   X

– e.g., prove the theorem: X + X • Y =   X

distributivity (8) X • Y + X • Y' =   X • (Y + Y')
complementarity (5) X • (Y + Y') =   X • (1)
identity (1D) X • (1) =   X 

identity (1D) X  +  X • Y =   X • 1  +  X • Y
distributivity (8) X • 1  +  X • Y =   X • (1 + Y)
identity (2) X • (1 + Y) =   X • (1)
identity (1D) X • (1) =   X 


