EECS 150 - Components and Design

Techniques for Digital Systems

Lec 02 - Gates and CMOS Technology

 8-30-07
David Culler

Electrical Engineering and Computer Sciences
University of California, Berkeley
http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

Outline

- Summary of last time
- Overview of Physical Implementations
- Boolean Logic
- CMOS devices
- Combinational Logic
- Announcements/Break
- CMOS transistor circuits
- basic logic gates
- tri-state buffers
- flip-flops
» flip-flop timing basics
" example use
» circuits

L01 Summary: Digital Design

The Boolean Abstraction
Given a functional description and performance, cost, \& power constraints, come up with an implementation using a set of primitives.

- How do we learn how to do this?

1. Learn about the primitives and how to generate them.
2. Learn about design representation.
3. Learn formal methods to optimally manipulate the representations.
4. Look at design examples.
5. Use trial and error - CAD tools and prototyping.

- Digital design is in some ways more an art than a science. The creative spirit is critical in combining primitive elements \& other components in new ways to achieve a desired function.
- However, unlike art, we have objective measures of a design: performance cost power \& Time to Market

Mapping from physical world to binary world

Technology	State 0	State 1
Relay logic	Circuit Open	Circuit Closed
CMOS logic	$0.0-1.0$ volts	$2.0-3.0$ volts
Transistor transistor logic (TTL)	$0.0-0.8$ volts	$2.0-5.0$ volts
Fiber Optics	Light off	Light on
Dynamic RAM	Discharged capacitor Charged capacitor	
Nonvolatile memory (erasable)	Trapped electrons	No trapped electrons
Programmable ROM	Fuse blown	Fuse intact
Bubble memory	No magnetic bubble	Bubble present
Magnetic disk	No flux reversal	Flux reversal
Compact disc	No pit	Pit

Sense the logical value, manipulate in s systematic fashion.

Possible Logic Functions of Two Variables

- 16 possible functions of 2 input variables:
$-2^{\star \star}\left(2^{* *} n\right)$ functions of n inputs

Logic Functions and Boolean Algebra

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and•

Boolean expression that is true when the variables X and Y have the same value and false, otherwise

Minimal set of functions

- Implement any logic functions from NOT, NOR, and NAND?
- For example, implementing $\quad X$ and Y is the same as implementing not (X nand Y)
- Do it with only NOR or only NAND
- NOT is just a NAND or a NOR with both inputs tied together

X	Y	X nor Y	X	X	X nand Y
0	0	1	0	0	1
1	1	0	1	1	0

- and NAND and NOR are "duals", i.e., easy to implement one using the other

$$
\begin{aligned}
X \underline{\text { nand }} Y & \equiv \text { not }((\underline{\text { not }} X) \text { nor }(\text { not } Y)) \\
X \underline{\text { nor } Y} & \equiv \underline{\text { not }}((\underline{\text { not }} X) \underline{\text { nand }}(\underline{\text { not }} Y))
\end{aligned}
$$

Waveform View of Logic Functions

- Just a sideways truth table
- But note how edges don't line up exactly
- It takes time for a gate to switch its output!

From Boolean Expressions to Logic Gates

- More than one way to map expressions to gates

$$
- \text { e.g., } Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot\left(\frac{B^{\prime} \cdot\left(\frac{T 2}{C+D}\right)}{T 1}\right)\right.
$$

8/30/2007

Proving theorems (perfect induction)

- De Morgan's Law
- complete truth table, exhaustive proof

$(X+Y)^{\prime}=X^{\prime} \cdot y^{\prime}$
NOR is equivalent to AND with inputs complemented

$$
(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}
$$

NAND is equivalent to $O R$ with inputs complemented

\square $=$

An algebraic structure

- An algebraic structure consists of
- a set of elements B
- binary operations $\{+, \bullet\}$
- and a unary operation \{ ' \}
- such that the following axioms hold:

1. set B contains at least two elements, a, b, such that $a \neq b$
2. closure:

$$
a+b \text { is in } B
$$

$a \cdot b$ is in B
3. commutativity:
4. associativity:
$a+b=b+a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
5. identity: $a+(b+c)=(a+b)+c$
6. distributivity: $\quad a+(b \cdot c)=(a+b) \cdot(a+c)$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
7. complementarity: $a+a^{\prime}=1$

Overview of Physical Implementations

The stuff out of which we make systems.

Technology	State "0"	State "1"
Relay logic	Circuit Open	Circuit Closed
CMOS logic	O.O-1.0 volts	2.0-3.0 volts
Transistor ransistor logic (TTL) $0.0-0.8$ volts	2.0-5.0 volts	
Fiber Optics	Light off	Light on
Dynamic RAM	Discharged capacitor Charged capacitor	
Nonvolatile memory (erasable)	Trapped electrons	No orapped electrons
Programmable ROM	Fuse blown	Fuse intact
Bubble memory	No magnetic bubble	Bubble present
Magnetic disk	No flux reversal	Flux reversal
Compact disc	No pit	Pit

Sense the logical value, manipulate in s systematic fashion.

Integrated Circuits

Chip in Package

- Package provides:

- spreading of chip-level signal paths to board-level
heat dissipation.
- Ceramic or plastic with gold wires.

Printed Circuit Boards

- fiberglass or ceramic
- 1-20 conductive layers
- 1-20in on a side
- IC packages are soldered down.

Multichip Modules (MCMs)

- Multiple chips directly connected to a substrate. (silicon, ceramic, plastic, fiberglass) without chip packages.

Integrated Circuits

- Moore's Law has fueled innovation for thearlastas decades.

- "Number of transistors on a die doubles every 18 months."

Integrated Circuits

- Uses for digital IC technology today:
- standard microprocessors
» used in desktop PCs, and embedded applications
» simple system design (mostly software development)
- memory chips (DRAM, SRAM)
- application specific ICs (ASICs)
» custom designed to match particular application
» can be optimized for low-power, low-cost, high-performance
» high-design cost / relatively low manufacturing cost
- field programmable logic devices (FPGAs, CPLDs)
» customized to particular application after fabrication
» short time to market
» relatively high part cost
- standardized low-density components
" still manufactured for compatibility with older system designs
8/30/2007
© UC Berkeley
EECS150-F05 CMOS lec02

Recall: Switches: basic element of physical implementations

- Implementing a simple circuit (arrow shows action if wire changes to " 1 "):

close switch (if A is "1" or asserted) and turn on light bulb (Z)

open switch (if A is " 0 " or unasserted) and turn off light bulb (Z)

CMOS Devices

- MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Cross Section

The gate acts like a capacitor. A high voltage on the gate attracts charge into the channel. If a voltage exists between the source and drain a current will flow. In its simplest approximation the device
 acts like a switch.

What's Complementary about CMOS

- CMOS devices work in pairs
- Three terminals: drain, gate, and source
- Switch action:
if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals

n-channel
open when voltage at G is low
closes when:
voltage $(\mathrm{G})>$ voltage $(\mathrm{S})+\varepsilon$

p-channel
closed when voltage at G is low
opens when:
voltage(G) < voltage (S) $-\varepsilon$

Building back up to our Boolean Abstraction

- NAND

\mathbf{x}	y	\mathbf{Z}
0	0	1
0	1	1
1	0	1
1	1	0

- NOR

- XOR
$X \oplus Y$
- XNOR
$X=Y$

x	y	z
0	0	1
0	1	0
1	0	0
1	1	0

X xor $Y=X Y^{\prime}+X^{\prime} Y$ X or Y but not both ("inequality", "difference")
X xnor $Y=X Y+X^{\prime} Y^{\prime}$ X and Y are the same ("equality", "coincidence")

8/30/2007

EECS150-F05 CMOS lec02

Transistor-level Logic Circuits (inv)

- Inverter (NOT gate):
 out
wh
what is the relationship between in and out?

Logical Values

- Threshold
- Logical 1 (true) : V > Vdd -V th - Logical 0 (false) : V < Vth
- Noise margin?
not(out, in)

Big idea: Self-restoring logic

Element of Time

- CMOS logic gates are self-restoring
- Even if the inputs are imperfect, switching time is fast and outputs go rail to rail
- Doesn't matter how many you cascade »Although propagation delay increases
- Manage fan-out to ensure sharp and complete transition

- Logical change is not instantaneous
- Broader digital design methodology has to make it appears as such
- Clocking, delay estimation, glitch avoidance
/30/2007 EECS150-F05 CMOS lec02

Announcements

Reading assignment for this week.
Katz and Boriello, Chap 1
K\&B 2.1-2.3, pp. 155-172
Homework 1 is posted - due week from friday

Computing with Switches

- Compose switches into more complex functions:

OR

Two fundamental structures: series (AND) and parallel (OR)

Transistor-level Logic Circuits - NAND

- Inverter (NOT gate):

- NAND gate

- Logic Function:
- out = 0 iff both \mathbf{a} AND $\mathbf{b}=1$ therefore out = (ab)'
- pFET network and nFET network are duals of one another.

How about AND gate?
8/30/2007 © uc Berkeley EECS150-F05 CMOS lec02

Transistor-level Logic Circuits

Simple rule for wiring up MOSFETs:

- nFET is used only to pass logic zero.
- pFet is used only to pass logic one.
- For example, NAND gate:

Note: This rule is sometimes violated
by expert designers under special conditions.
8/30/2007
© UC Berkeley
EECS150-F05 CMOS lec02

Transistor-level Logic Circuits - NOR

- NAND gate

- NOR gate

a	b	out
0	0	1
0	1	0
1	0	0
1	1	0

Function:

- out $=\mathbf{0}$ iff both \mathbf{a} OR $\mathbf{b}=1$ therefore out $=(a+b)$ '
- Again pFET network and nFET network are duals of one another.
- Other more complex functions are possible. Ex: out $=(a+b c)^{\prime}$

Transistor-level Logic Circuits

- Tri-state Buffer

Transistor circuit for inverting tri-state buffer:

"high impedance"
(output disconnected)

- Variations

Inverting buffer

Inverted enable

"transmission gate"

Tri-state buffers are used when multiple circuits all connect to a common bus. Only one circuit at a time is allowed to drive the bus. All others "disconnect".

Transmission Gate

- Transmission gates are the way to build "switches" in CMOS.
- Both transistor types are needed:
- nFET to pass zeros.
- pFET to pass ones.
- The transmission gate is bi-directional (unlike logic gates and tri-state buffers).
- Functionally it is similar to the tri-state buffer, but does not connect to Vdd and GND, so must be combined with logic gates or buffers.

Is it self restoring?
8/30/2007
© uc Berkeley Etcisibu-rus civius lecu

- Mulstiplexor

If $s=1$ then $c=a$ else $c=b$

- Transistor Circuit for inverting multiplexor:

Transistor-level Logic Circuits - MUX

- Multiplexor

If $s=1$ then $c=a$ else $c=b$

- Transistor Circuit for inverting multiplexor:

Interactive Quiz

- Generate truth table for MUX

$\operatorname{mux}(c, s, a, b)$
- Boolean expression?
- Can you build an inverter out of a MUX?
- How about AND?

Combinational vs. Sequential Digital Circuits
 \qquad

- Simple model of a digital system is a unit with inputs and outputs:

- Combinational means "memory-less"
- Digital circuit is combinational if its output values only depend on its inputs

Sequential logic

- Sequential systems

- Exhibit behaviors (output values) that depend on current as well as previous inputs
- All real circuits are sequential
- Outputs do not change instantaneously after an input change
- Why not, and why is it then sequential?
- Fundamental abstraction of digital design is to reason (mostly) about steady-state behaviors
- Examine outputs only after sufficient time has elapsed for the system to make its required changes and settle down

Synchronous sequential digital systems

- Combinational circuit outputs depend only on current inputs
- After sufficient time has elapsed
- Sequential circuits have memory
- Even after waiting for transient activity to finish
- Steady-state abstraction: most designers use it when constructing sequential circuits:
- Memory of system is its state
- Changes in system state only allowed at specific times controlled by an external periodic signal (the clock)
- Clock period is elapsed time between state changes sufficiently long so that system reaches steady-state before next state change at end of period

Recall: What makes Digital Systems tick?

time

D-type edge-triggered flip-flop

- The edge of the clock is used to sample the "D" input \& send it to "Q" (positive edge triggering).
- At all other times the output Q is independent of the input D (just stores previously sampled value).
- The input must be stable for a short time before the clock edge.

Parallel to Serial Converter Example

LD $\quad X=[x n-1, x n-2, \ldots, x 1, x 0]$

- Each stage:
- 4-bit version:

if $L D=1$

 else from previous stage.

8/30/2007
© uc Berkeley
EECS150-F05 CMOS lec02
42

Parallel to Serial Converter Example

- Operation:
- cycle 1: load x, output x_{0}
- cycle i: output x_{i}
- Each stage:
- 4-bit version:

Parallel to Serial Converter Example

Transistor-level Logic Circuits - Latch

- Positive Level-sensitive latch

8/30/2007

Summary: Representation of digital

 designs- Physical devices (transistors, relays)
- Switches
- Truth tables
- Boolean algebra
- Gates
more depth than 61 C
- Waveforms
focus on building systems
- Finite state behavior
- Register-transfer behavior
- Concurrent abstract specifieations

Axioms and theorems of Boolean algebra (cont'd)

- Distributivity:

8. $\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \cdot \mathrm{Z}) 8 \mathrm{D} . \mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})$

- Uniting:

9. $X \cdot Y+X \cdot Y^{\prime}=X$
9D. $\left.(X+Y) \cdot(X+Y)^{\prime}\right)=X$

- Absorption:

10. $X+X \cdot Y=X$

10D. $X \cdot(X+Y)=X$
11. $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y$

11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$

- Factoring:

12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=$

12D. $X \cdot Y+X \cdot Z=$
$X \cdot Z+X \cdot Y$
$(X+Z) \cdot\left(X^{\prime}+Y\right)$

- Concensus:

13. $(X \cdot Y)+(Y \cdot Z)+(X ' Z)=13 D .(X+Y) \cdot(Y+Z) \cdot(X ' Z)=$ $X \cdot Y+X \cdot Z \quad(X+Y) \cdot(X+Z)$

Axioms and theorems of Boolean algebra (cont')

- de Morgan's:

> 14. (X + Y + ...)' = X' • Y' • ... 14D. (X • Y • ...)' = X' + Y' + ...

- generalized de Morgan's:

15. $f^{\prime}(X 1, X 2, \ldots, X n, 0,1,+, \bullet)=f\left(X 1{ }^{\prime}, X 2^{\prime}, \ldots, X n ', 1,0, \bullet,+\right)$

- establishes relationship between • and +

Axioms \& theorems of Bool. Alg. - Duality

- Duality
- Dual of a Boolean expression is derived by replacing •by +, + by •

0 by 1 , and 1 by 0 , and leaving variables unchanged

- Any theorem that can be proven is thus also proven for its dual!
- Meta-theorem (a theorem about theorems)
- duality:

$$
\text { 16. } X+Y+\ldots \Leftrightarrow X \cdot Y \cdot \ldots
$$

- generalized duality:

$$
\text { 17. f }(X 1, X 2, \ldots, X n, 0,1,+, \bullet) \Leftrightarrow f(X 1, X 2, \ldots, X n, 1,0, \bullet,+)
$$

- Different than deMorgan's Law
- this is a statement about theorems
- this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

