
© UC Berkeley

EECS 150 - Components and Design
Techniques for Digital Systems

Lec 01 – Introduction
8-28-07

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://inst.eecs.berkeley.edu/~cs150

8/28/07 EECS150 F07 Lec01 - Intro 2© UC Berkeley

Introductions – CS150 Staff
David E. Culler
culler@cs.berkeley.edu
http://www.eecs.berkeley.edu/~culler
627 Soda Hall, 643-7572
Office hours: Tue 3:30-5, Fr 9-11

Sarah Bird
slbird@eecs.berkeley.edu

Allen Lee
leeallen@berkeley.edu

Udam Singh Saini
usani08@berkeley.edu

Shah Bawany
shahbawany@gmail.com

Shauki Elassaad
shauki@eecs.berkeley.edu

8/28/07 EECS150 F07 Lec01 - Intro 3© UC Berkeley

EECS 150 Project in my day
• Row of LEDs
• Bunch of TTL SSI chips

– TTL cookbook

• Couple of switches for paddle
• Bread board

– Ground plane would oscillate after wires signal
punched through

• Oscilloscope and logic analyzer

8/28/07 EECS150 F07 Lec01 - Intro 4© UC Berkeley

My post-EECS150 summer job

CHI-5 16-bit Digital Speech Processor

8/28/07 EECS150 F07 Lec01 - Intro 5© UC Berkeley

Digital Design in Your Life…

Your ideas here …

8/28/07 EECS150 F07 Lec01 - Intro 6© UC Berkeley

CaLinx2 – Your EECS150 …

8/28/07 EECS150 F07 Lec01 - Intro 7© UC Berkeley

CaLinx II - Class Lab/Project Board

Flash Card &
Micro-drive Port

Video Encoder &
Decoder

AC ’97 Codec &
Power Amp

Video & Audio Ports Four 100 Mb
Ethernet Ports

8 Meg x 32
SDRAM

Quad Ethernet
Transceiver

Xilinx
Virtex 2000ESeven Segment

LED Displays

Prototype
Area

8/28/07 EECS150 F07 Lec01 - Intro 8© UC Berkeley

Wireless network + …
• IEEE 802.15.4 Personal Area Network
• ADC channels
• Simple display
• Serial interface

8/28/07 EECS150 F07 Lec01 - Intro 9© UC Berkeley

Fa07 Course Project – i50phone

Audio
CodecA

ud
io

Po
rt

Video
Decode

SDram

Display

Wireless

Ethernet

Key input

8/28/07 EECS150 F07 Lec01 - Intro 10© UC Berkeley

Outline
• Introductions
• Project Teaser
• Course Content
• Administrivia

– Enrollment & Attendance
– Course Structure & Grading

• A Few Basic Principles of Digital Design
• Summary

• Reading: Katz&Boriello, Ch 1

8/28/07 EECS150 F07 Lec01 - Intro 11© UC Berkeley

What is EECS150 about?

Transfer Function

Transistor Physics

Devices

Gates

Circuits

FlipFlops

EE 40

HDL

Machine Organization

Instruction Set Arch

Pgm Language

Asm / Machine Lang
CS 61C

Deep Digital Design Experience
Fundamentals of Boolean Logic

Synchronous Circuits

Finite State Machines

Timing & Clocking

Device Technology & Implications

Controller Design

Arithmetic Units

Bus Design

Encoding, Framing

Testing, Debugging

Hardware Architecture

HDL, Design Flow (CAD)

8/28/07 EECS150 F07 Lec01 - Intro 12© UC Berkeley

Course Content
Components and Design Techniques for Digital Systems

Synchronous Digital Hardware Systems

Example digital representation: acoustic waveform

A series of numbers is used to represent the waveform, rather than a
voltage or current, as in analog systems.

• Synchronous: “Clocked” - all changes in the system are
controlled by a global clock and happen at the same time (not
asynchronous)

• Digital: All inputs/outputs and internal values (signals) take on
discrete values (not analog).

8/28/07 EECS150 F07 Lec01 - Intro 13© UC Berkeley

What makes Digital Systems tick?

Combinational

Logic

time

clk

What determines the systems performance?

8/28/07 EECS150 F07 Lec01 - Intro 14© UC Berkeley

Course Content

• Not a course on transistor physics and transistor
circuits. Although, we will look at these to better
understand the primitive elements for digital circuits.

• Not a course on computer architecture or the
architecture of other systems. Although we will look
at these as examples.

• Hardware Architectures
• Arithmetic units, controllers
• Memory elements, logic gates,

busses
• Transistor-level circuits
• Transistors, wires

8/28/07 EECS150 F07 Lec01 - Intro 15© UC Berkeley

We Will Learn in EECS 150 …

• Language of logic design
– Logic optimization, state, timing, CAD tools

• Concept of state in digital systems
– Analogous to variables and program counters in software systems

• Hardware system building
– Datapath + control = digital systems

• Hardware system design methodology
– Hardware description languages: Verilog
– Tools to simulate design behavior: output = function (inputs)
– Logic compilers synthesize hardware blocks of our designs
– Mapping onto programmable hardware (code generation)

• Contrast with software design
– Both map specifications to physical devices
– Both must be flawless …

8/28/07 EECS150 F07 Lec01 - Intro 16© UC Berkeley

What is Logic Design?
• What is design?

– Given problem spec, solve it with available components
– While meeting quantitative (size, cost, power) and qualitative

(beauty, elegance)

• What is logic design?
– Choose digital logic components to perform specified control,

data manipulation, or communication function and their
interconnection

– Which logic components to choose?
Many implementation technologies (fixed-function
components, programmable devices, individual transistors on
a chip, etc.)

– Design optimized/transformed to meet design constraints

8/28/07 EECS150 F07 Lec01 - Intro 17© UC Berkeley Source: Microsoft Encarta
sense

sense
drive

AND

What is Digital Hardware?

• Devices that sense/control wires carrying digital
values (physical quantity interpreted as “0” or “1”)

– Digital logic: voltage < 0.8v is “0”, > 2.0v is “1”
– Pair of wires where “0”/“1” distinguished by which has higher

voltage (differential)
– Magnetic orientation signifies “0” or “1”

• Primitive digital hardware devices
– Logic computation devices (sense and drive)

» Two wires both “1” - make another be “1” (AND)
» At least one of two wires “1” - make another be “1” (OR)
» A wire “1” - then make another be “0” (NOT)

– Memory devices (store)
» Store a value
» Recall a value previously stored

8/28/07 EECS150 F07 Lec01 - Intro 18© UC Berkeley

Current State of Digital Design
• Changes in industrial practice

– Larger designs
– Shorter time to market
– Cheaper products

• Scale
– Pervasive use of computer-aided design tools over hand methods
– Multiple levels of design representation

• Time
– Emphasis on abstract design representations
– Programmable rather than fixed function components
– Automatic synthesis techniques
– Importance of sound design methodologies

• Cost
– Higher levels of integration
– Use of simulation to debug designs

• Power
– Critical at the high performance end
– Critical at the portable end

Parts Cost: $25
Sales Price: $39!

8/28/07 EECS150 F07 Lec01 - Intro 19© UC Berkeley

Moore’s Law – 2x stuff per 1-2 yr

8/28/07 EECS150 F07 Lec01 - Intro 20© UC Berkeley

New ability: perform logic design with computer-aided design tools,
validating that design via simulation, and mapping its implementation
into programmable logic devices;
Appreciating the advantages/disadvantages hw vs. sw implementation

CS 150: Concepts/Skills/Abilities
• Basics of logic design (concepts)
• Sound design methodologies (concepts)
• Modern specification methods (concepts)
• Familiarity with full set of CAD tools (skills)
• Appreciation for differences and similarities

(abilities) in hardware and software design
• Hands-on experience with non-trivial design

8/28/07 EECS150 F07 Lec01 - Intro 21© UC Berkeley

Traversing Digital Design

EE 40 CS61C

EECS150 wks 1-6

EECS150 wks 6-15

8/28/07 EECS150 F07 Lec01 - Intro 22© UC Berkeley

Administrative Issues

• See inst.eecs.berkeley.edu/~cs150 every day
• Lab lectures and discussions in 125 Cory

– Dis 101 Th 3-4 Cancelled (0 enrolled)

• If you are enrolled OR plan to take the course you
must attend your lab section this week.

• If you need to ADD the class, see me after class.
• Lab sections will be held this week.
• No discussion sections this week
• Lab lecture on Friday.

8/28/07 EECS150 F07 Lec01 - Intro 23© UC Berkeley

Attendance
• Attend regular lectures and ask questions.

– No webcast

• Attend weekly “lab lecture” (Friday 2-3).
– Probably webcast

• Attend your lab section. You must stick with the
same lab section all semester.

– We will put together a lab section exchange in a few weeks to
help you move to a different section.

• Attend any discussion section. You may attend
any discussion section that you want regardless
of which one you are enrolled in. Attendance is
optional, but useful.

• The instructor and TAs hold regular office hours
(see class webpage). Please take advantage of
this opportunity!

8/28/07 EECS150 F07 Lec01 - Intro 24© UC Berkeley

Course Materials

• Class notes, homework & lab assignments, solutions, and other
documentation will be available on the class webpage:

http://inst.eecs.berkeley.edu/~cs150
– Check the class webpage and newsgroup often!
– You are responsible for checking the class webpage at least once every 24

hours.

• Textbook: R. H. Katz, G. Borriello, Contemporary Logic
Design, 2nd Ed., Prentice Hall/Pearson Publishing.

8/28/07 EECS150 F07 Lec01 - Intro 25© UC Berkeley

Course Grading

3 Exams
45%

project
30%

HW
10%

labs
15%

• Three exams of approximately equal
weight
• Possibly some quizzes

• Weekly homework based on reading
and lectures.
• Out by Th lecture, due Friday

2:00 next week
• Lab exercises for weeks 1-6,

followed by project checkpoints and
final checkoff.

• Labs and checkpoints due within the
first 30 minutes of your next lab
session.

8/28/07 EECS150 F07 Lec01 - Intro 26© UC Berkeley

Cheating
• Any act that gives you unfair advantage at the expense

of another classmate.
• Examples:

– copying on exams, homework,
– copying design data,
– modifying class CAD software,
– modifying or intentionally damaging lab equipment.

• If you ever have a question about what will be
considered cheating, please ask.

• What should the penalty be?
– Fail the course. Report to student affairs.
– Fail the assignment / exam / project. (first time) Report.
– Fail the disputed entity.

• Key is time management. Avoid desperation.

8/28/07 EECS150 F07 Lec01 - Intro 27© UC Berkeley

Lecture format
• Outline
• Quick review of key points from previous time
• Main Topic
• Administrative issues & Break
• Additional depth or additional topic
• Summary of key points

You are here

8/28/07 EECS150 F07 Lec01 - Intro 28© UC Berkeley

Example Digital Systems
• Computer

– Usually design to maximize performance. "Optimized for
speed"

- Usually designed to minimize cost.
“Optimized for low cost”

- Of course, low cost comes at the expense of
speed.

• Calculator

8/28/07 EECS150 F07 Lec01 - Intro 29© UC Berkeley

Example Digital Systems
• Digital Watch

– Low power operation comes at the expense of:
» lower speed
» higher cost

Designed to minimize power.
Single battery must last for years.

8/28/07 EECS150 F07 Lec01 - Intro 30© UC Berkeley

Basic Design Tradeoffs

• You can usually improve on one at the expense of one
or both of the others.

• These tradeoffs exist at every level in the system
design - every sub-piece and component.

• Design Specification -
– Functional Description.
– Performance, cost, power constraints.

• As a designer you must make the tradeoffs necessary
to achieve the function within the constraints.

8/28/07 EECS150 F07 Lec01 - Intro 31© UC Berkeley

To design is to represent…
• How is design and engineering different from

craftsmanship?

• What is the result of the design process?

8/28/07 EECS150 F07 Lec01 - Intro 32© UC Berkeley

Design Representation

8/28/07 EECS150 F07 Lec01 - Intro 33© UC Berkeley

Hierarchy in Designs
• Helps control complexity -

– by hiding details and reducing the total number of things to handle at
any time.

• Modularizes the design -
– divide and conquer
– simplifies implementation and debugging

• Top-Down Design
– Starts at the top (root) and works down by successive refinement.

• Bottom-up Design
– Starts at the leaves & puts pieces together to build up the design.

• Which is better?
– In practice both are needed & used.

» Need top-down divide and conquer to handle the complexity.
» Need bottom-up because in a well designed system, the structure

is influence by what primitves are available.

8/28/07 EECS150 F07 Lec01 - Intro 34© UC Berkeley

Building Blocks of Digital Logic

8/28/07 EECS150 F07 Lec01 - Intro 35© UC Berkeley

a b out

0 0 1

0 1 1

1 0 1

1 1 0

Interactive Background Quiz

1. What is the truth table
for logic implemented by
this circuit?

2. What is the name of this
logic gate?

3. What is its symbol?

4. How would you make an
inverter out of it?

5. Which is faster, the rise
time or the fall time?

8/28/07 EECS150 F07 Lec01 - Intro 36© UC Berkeley

Logical Values

• Threshold
– Logical 1 (true) : V > Vdd –V th
– Logical 0 (false) : V < Vth

V

+3

0

Logic 1

Logic 0

Vout

+3

0

Logic 0
Input Voltage

Logic 1
Input Voltage

Vin
+5

F

in out

T

T

F

not(out, in)

8/28/07 EECS150 F07 Lec01 - Intro 37© UC Berkeley

Technology State “0” State “1”

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitorCharged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

Mapping from physical world to
binary world

Sense the logical value, manipulate in s systematic fashion.

8/28/07 EECS150 F07 Lec01 - Intro 38© UC Berkeley

close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

Switches: basic element of physical
implementations

• Implementing a simple circuit (arrow shows action if
wire changes to “1”):

Z ≡ A

A
Z

8/28/07 EECS150 F07 Lec01 - Intro 39© UC Berkeley

What is this?

• 1-bit Analog to Digital Converter

A

V

8/28/07 EECS150 F07 Lec01 - Intro 40© UC Berkeley

Boolean Algebra/Logic Circuits
• Why are they called “logic circuits”?
• Logic: The study of the principles of reasoning.
• The 19th Century Mathematician, George Boole,

developed a math. system (algebra) involving logic,
Boolean Algebra.

• His variables took on TRUE, FALSE
• Later Claude Shannon (father of information theory)

showed (in his Master’s thesis!) how to map Boolean
Algebra to digital circuits:

• Primitive functions of Boolean Algebra:

8/28/07 EECS150 F07 Lec01 - Intro 41© UC Berkeley

Relationship Among Representations

Truth Table

 Boolean
Expression

 gate
representation
 (schematic)

?
?

unique

not
unique

not
unique

[convenient for
manipulation]

[close to
implementaton]

* Theorem: Any Boolean function that can be expressed as a truth table
can be written as an expression in Boolean Algebra using AND, OR,
NOT.

How do we convert from one to the other?

8/28/07 EECS150 F07 Lec01 - Intro 42© UC Berkeley

Combinational Logic Symbols

• Common combinational logic systems have standard
symbols called logic gates

– Buffer, NOT

– AND, NAND

– OR, NOR

Z

A
B

Z

Z

A

A
B

Easy to implement
with CMOS transistors
(the switches we have
available and use most)

8/28/07 EECS150 F07 Lec01 - Intro 43© UC Berkeley

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X
Y

X
Y Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y' + X' Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X' Y'
X and Y are the same

("equality", "coincidence")

more Boolean Expressions to Logic Gates

• NAND

• NOR

• XOR
X ⊕ Y

• XNOR
X = Y

8/28/07 EECS150 F07 Lec01 - Intro 44© UC Berkeley

X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X
Y F

X Y

X nor Y
not (X or Y)

X nand Y
not (X and Y)

10 not X
X and Y

X or Y

not YX xor Y X = Y

Possible Logic Functions of Two Variables

• 16 possible functions of 2 input variables:
– 2**(2**n) functions of n inputs

8/28/07 EECS150 F07 Lec01 - Intro 45© UC Berkeley

X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' Y' X • Y X' • Y' (X • Y) + (X' • Y')
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X • Y) + (X' • Y') ≡ X = Y

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is
true when the variables X
and Y have the same value
and false, otherwise

Logic Functions and Boolean Algebra
• Any logic function that can be expressed as a

truth table can be written as an expression in
Boolean algebra using the operators: ', +, and •

8/28/07 EECS150 F07 Lec01 - Intro 46© UC Berkeley

X Y X nand Y
0 0 1

1 1 0

X Y X nor Y
0 0 1

1 1 0

X nand Y ≡ not ((not X) nor (not Y))
X nor Y ≡ not ((not X) nand (not Y))

Minimal set of functions
• Implement any logic functions from NOT, NOR, and

NAND?
– For example, implementing X and Y

is the same as implementing not (X nand Y)

• Do it with only NOR or only NAND
– NOT is just a NAND or a NOR with both inputs tied together

– and NAND and NOR are "duals", i.e., easy to implement one using
the other

8/28/07 EECS150 F07 Lec01 - Intro 47© UC Berkeley

time

change in Y takes time to "propagate" through gates

Waveform View of Logic Functions
• Just a sideways truth table

– But note how edges don't line up exactly
– It takes time for a gate to switch its output!

8/28/07 EECS150 F07 Lec01 - Intro 48© UC Berkeley

T1

T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean Expressions to Logic Gates
• More than one way to map expressions to

gates

– e.g., Z = A' • B' • (C + D) = (A' • (B' • (C + D)))

8/28/07 EECS150 F07 Lec01 - Intro 49© UC Berkeley

inputs outputssystem

Combinational vs. Sequential Digital
Circuits

• Simple model of a digital system is a unit
with inputs and outputs:

• Combinational means "memory-less"
– Digital circuit is combinational if its output values

only depend on its inputs

8/28/07 EECS150 F07 Lec01 - Intro 50© UC Berkeley

Sequential Logic
• Sequential systems

– Exhibit behaviors (output values) that depend
on current as well as previous inputs

• Time response of real circuits are sequential
– Outputs do not change instantaneously after an input change
– Why not, and why is it then sequential?

• Fundamental abstraction of digital design is to
reason (mostly) about steady-state behaviors

– Examine outputs only after sufficient time has elapsed for the
system
to make its required changes and settle down

8/28/07 EECS150 F07 Lec01 - Intro 51© UC Berkeley

Synchronous sequential digital
systems
• Combinational circuit outputs depend only on

current inputs
– After sufficient time has elapsed

• Sequential circuits have memory
– Even after waiting for transient activity to finish

• Steady-state abstraction: most designers use it
when constructing sequential circuits:
– Memory of system is its state
– Changes in system state only allowed at specific times

controlled by an external periodic signal (the clock)
– Clock period is elapsed time between state changes

sufficiently long so that system reaches steady-state before
next state change at end of period

8/28/07 EECS150 F07 Lec01 - Intro 52© UC Berkeley

Recall: What makes Digital Systems tick?

Combinational

Logic

time

clk

8/28/07 EECS150 F07 Lec01 - Intro 53© UC Berkeley

D-type edge-triggered flip-flop

• The edge of the clock is used
to sample the "D" input &
send it to "Q” (positive edge
triggering).

– At all other times the output Q is
independent of the input D (just
stores previously sampled value).

– The input must be stable for a
short time before the clock edge.

8/28/07 EECS150 F07 Lec01 - Intro 54© UC Berkeley

Summary: Digital Design
Given a functional description and performance, cost, & power

constraints, come up with an implementation using a set of
primitives.

• How do we learn how to do this?
1. Learn about the primitives and how to generate them.
2. Learn about design representation.
3. Learn formal methods to optimally manipulate the representations.
4. Look at design examples.
5. Use trial and error - CAD tools and prototyping.

• Digital design is in some ways more an art than a
science. The creative spirit is critical in combining
primitive elements & other components in new ways to
achieve a desired function.

• However, unlike art, we have objective measures of a
design: performance cost power

