EECS150 Fall 2007 Lab 4

UNIVERSITY OF CALIFORNIA AT BERKELEY
COLLEGE OFENGINEERING
DEPARTMENT OFELECTRICAL ENGINEERING AND COMPUTERSCIENCE

AsSIGNED | Week of 9/24
DUE: | Week of 10/1, 10 minutes after start (xx:20yadr assigned lab section.

Lab 4
Debugging & Verification

1.0 Motivation

Many of you will be very familiar with the proces$ debugging software, and
thanks to the circuits which you have had to boNer the last few weeks, you've all
become at least minimally familiar with debuggir@y own circuits. In this lab you will
become acquainted with more formal debugging amdicegion techniques and tools as
we ask you to debug and verify a series of modules.

2.0 Introduction

No matter how carefully you plan and enter youcwiir design, it should always
come as a major surprise if it works the first tiy@u try it. The larger and more
complicated the design, the larger the fractiothefengineering time you should expect
to spend on debugging and verification. In a pei@nal setting, a design would not be
considered finished without a complete testingmesgi to prove that it works acceptably
under all circumstances, a process which can eesiigume more than 50% of the time
required to implement a design.

In the interest of time, we cut a fair number ofr@ss in this class, for example
rather than expecting your design to be fully vedf(or even fully debugged), we will
expect it to appear to work. This is simply beeawe do not have time to fully examine
your testing regimen. However itiis your best interest to fully verify your modules
Most students will simply write a piece of Verilagd synthesize it, hopping that it will
work and perhaps wasting hours debugging it inieffitty.

WE HIGHLY RECOMMEND THAT YOU CONSIDER WRITING AN APPROPRIATE AND
COMPLETE TESTBENCH AN INTEGRAL PART OF WRITING A VERILOG MODULE. THISWILL
SAVE YOU MANY SLEEPLESSNIGHTS.

2.1 Verification Procedure
There are roughly two steps in the verificationgess:
1. Perform a test
2. If the test fails, debug the module being tested
As such there are two very different parts to tkefication process, designing
tests and actual debugging. We will discuss deipgggn section 2.2 Debugging
Procedure below.

ucB 1 2007

EECS150 Fall 2007 Lab 4

Because hardware modules are often very much lamggrmore complex than
pieces of software it is often not possible toyfulerify a module. For example a 32bit
adder accepts®2possible combinations of inputs, so even if itlddwe run at 10GHz it
would take nearly 60 years to plug in all possiBf inputs, even assuming that a
matching 32bit adder could be built to test it agai To make matters worse, most
circuits have some kind of memory requiring expdiadiy more time to test. Because of
this exhaustive testing only suffices for the mioasic of modules, where it can be run
easily.

For more complicated modules, hardware enginegrorebottom up testing and
interface contracts to ensure that the modulesiwifiey instantiate work as expected, as
do the modules with which they must interact. Othe course of this lab and the
remainder of the semester you will become intinyatemiliar with this style of testing,
as it is the only way to produce a fully workingsag.

2.2 Debugging Procedure

Once you know that something is working properlisibften a relatively trying
ordeal to hunt down and fix the actual bug. Beiswa formalized algorithm that you can
use as a starting point for your forays into delogg

2.2.1 Hypothesis

Before starting to try and debug a design you nhmaste a clear hypothesis of
what the problem might be. Even if your hypothasisery much wrong you should
always have something specific that you are lookmrgwhen you start a debugging
session. “Whatever is wrong” is not a specificuggiogoal.

2.2.2 Control

With a hypothesis of what is broken in mind, thetngtep in debugging is to
develop a set of test inputs which will test foe thpecific bug you expect. Usually
developing the test inputs is one of the most diffi parts of the debugging and
verification process.

The difference between test inputs for generalfication and for debugging is
simple: inputs for debugging are meant to aid youessting your hypothesis, whereas
inputs for verification should be designed to ¢las wide a range of bugs as possible.

2.2.3 Expected Output

Before actually beginning a test, it is necessaryigure out what the expected
result of the test will be. This should be a sipiatter of working through the circuit
specification by hand using the test inputs, aseldged according to section 2.2.2
Control above.

2.2.4 Observe

With a hypothesis in mind and test outputs and etgokoutputs in hand it is now
time to actually run the test. Unfortunately tigsusually a very complicated process,
made worse by slow simulation times, complex ctecand the difficulty of examining
signals in hardware.

ucB 2 2007

EECS150 Fall 2007 Lab 4

To make this step easier, a testbench or test $mwcen be developed to look for
the expected output and produce more meaningfortepf the success or failure of the
test. For example if the test succeeded, all veslne know is that it succeeded, not the
how or why of it.

2.2.5 Handling Test Results

Ironically a test which fails is a major successimy debugging. If the test
succeeds, all that has been proved is that thenatigypothesis is false and that there is
still a bug in the circuit. However if the testi$athat means that the hypothesis has been
proven true and the bug has been found.

When we say that “the bug has been found” we sinmpdan that it has been
further localized, that is to say, we have a battea of what module or what signal is
causing the trouble. Fully specifying the bug &hehtifying the exact fix may require
several iterations of this debugging algorithm amahy hours of work beyond the first
test.

ALWAYS BE SURE THAT YOU KNOW EXACTLY WHAT THE BUG IS AND HAVE A WELL
DESIGNED FIX BEFORE MODIFYING YOUR CODE! MAKING RANDOM CHANGES UNTIL THE
PROBLEM DISAPPEARSWILL SIMPLY PROLONG THE PROBLEM AND FRUSTRATE YOU!

2.3 Types of Debugging (Parts of this Lab)
In this lab, we will introduce you to four specitigpes of debugging, all of which
you will likely be obligated to use during your #nm this class.

1. Bottom Up Testing: In this part you will take advantage of the
hierarchical structure of a design, testing thedolgvel modules first and
moving towards the top step-by-step.

2. Designing Test Hardware: Rather than simulating this circuit you will
perform much faster testing using carefully desttest hardware.

3. Exhaustive FSM Testing: You will feed a stream of inputs to a Finite
State Machine in order to completely map its fun@iity and draw a
bubble-and-arc diagram.

3.0 Prelab

Please make sure to complete the prelab beforatyend your lab sectionYou
will not be able to finish this lab in 3hrs otherwse!
1. Read this handout thoroughly Pay particular attention to section 4.0
Lab Procedure as it describes what you will be glaindetail.
2. Examine the Verilog provided for this weeks lab.
a. You should become intimately familiar with thab4Partl.v file
asyou will need to debug it
b. Make sure to read th€ount.v and Register.vmodules inPart2
as you may wish to use them.
3. Write your Verilog ahead of time.
a. You will needthree separate testbenchefor Partl
I. Lab4PeakDetectorTestbench.v, Lab4Comp4Testbench.v
and Lab4ComplTestbench.v

ucB 3 2007

EECS150 Fall 2007 Lab 4

ii. Refer topast testbenchess a starting point.
b. Lab4Part2Tester.v
I. You may need time in lab to debug it
ii. Start with aiming diagram andschematic
4. Prepare your testsfor Part 3
a. Look at the FSM in Figure 4 and try to deviseseguence of
inputs to test it completely
5. You will need thesntire 3hr lab!
a. You will need to test and debug both your verilog aurs.

4.0 Lab Procedure

Remember tonanage your Verilog, projects and folders well Doing a poor
job of managing your files can cost ybours of rewriting code, if you accidentally
delete your files.

4.1 Bottom Up Testing

This part of the lab will be entirely iModelSim. You may wish to read the
ModelSim Tutorial on the course website before jumping in.http://www-
inst.eecs.berkeley.edu/~cs150/sp06/Documents.plip#alg

You will be testing the three modules that areha ltab4Partl.v file, which
together form amccumulator very similar to the one you built in Lab #2 In order to
fully verify that all three modules work, and toveayourself a number of headaches you
will be testing each module separatelgs youmove up the hierarchy

Lab4 Peak
Lab4 Peak /’ " e [O
Detector
Mixed Lab4PeakDetectorTestbench
il I
‘ Lab4Comp4Testbench
Lab4 Comp1
Behavioral \
In —» Lab4 Comp1 — Out
Lab4Comp1Testbench

Figure 1: Lab #4 Partl Module Hierarchy & Testbersch

ucB 4 2007

EECS150 Fall 2007 Lab 4

4.1.1 Lab4Compl

The first module you will be testing is essentiadlyduplicate of theCompl
module you were asked to build in Lab #2. The nuifference is that we asked you to
usestructural verilog and primitive gates in Lab #3, whereas this time we have used
behavioral verilog. Of coursehis version has a bugwhich you will need to find and
fix before moving on to test tHeab4Comp4 module.

Signal Width | Dir | Description

A 1 I The first input

B 1 I The second input

Greaterin 1 I TheGreaterOut from the next higher bit
Equalin 1 I TheEqualOut from the next higher bit
GreaterOut 1 O | Should bel’bl wheneveB > A

EqualOut 1 O | Should bel’bl wheneveB = A

Table 1: Port Specification for Lab4Compl

EachLab4Compl module is responsible f@omparing one bitof A to one bit
of B. In order to generate a useful output howeveregtds to know the relationship
between thénigher order bits of A andB, hence th&reaterin andEqualln inputs.

Notice that theGreaterOut andEqualOut outputs from the least significant
bit (bit 0), will yield the correct information fathe comparison oéll of the bits of A
and B.

For this module you will perfornexhaustive testing meaning that you will try
all 2* = 16 input values in your testbench. This is ifdasbecause there as® few
inputs and no state registers

In order to make your life easier, you shooldke use ofif statementsandthe
$display processin Verilogto display text errors any time theactual output of the
Lab4Compl modulediffers from the expected output For an example of how to use
the $display process, see Figure 3 in section 448 PeakDetector below or tHeEE
Verilog Reference

https://www-inst.eecs.berkeley.edu/~cs150/Protédbed/verilog-ieee.pdf

4.1.2 Lab4Comp4

With afully debugged Lab4Compl modulan hand you are now ready to debug
the Lab4Comp4 module, which instantiates four Laim@1 modules. This module is
again very simple, taking two 4 bit inputs aegorting if the second is greater-than or
equal-to the first.

Signal Width | Dir | Description

A 4 | The first input

B 4 I The second input
GreaterEqual 1 O Should bel’bl wheneveB > A

Table 2: Port Specification for Lab4Comp4
For this module you will perfornexhaustive testing meaning that you will try
all 28 = 256 input values in your testbench. This issilsie because there ase few
inputs and no state registers

ucB S 2007

EECS150 Fall 2007 Lab 4

In order to make your life easier, you should ustora or while loop to
generatethe input values andf statementsandthe $display processin Verilogto
display text errors any time thectual output of theLab4Comp4 modulediffers from
the expected output For an example of how to use tbdisplay process ofor or
while loops, see Figure 3 in section 4.1.3 Lab4Peakbmtdwelow or thelEEE
Verilog Reference

https://www-inst.eecs.berkeley.edu/~cs150/Protédbed/verilog-ieee.pdf

4.1.3 Lab4PeakDetector

The Lab4PeakDetector = module should present no challenges to you at this
point. Itis a simple module that accepts a hgwiron ever cycle and outputs the largest
input it has been given since the IRgiset .

Reset

Register 2 » Out

L\

Clock

Lab5PeakDetector
Figure 2: Lab4 Partl Peak Detector Block Diagram

Since the_ab4PeakDetector has5 inputs and a 4 bit register testing all of
the possible combinational logic paths would takemere 2 = 512 inputs however
nearly all of the Verilog modules written have sigificantly more inputs and state
information, making itimpossible to perform exhaustive testingn these modules.

Therefore in testing theab4PeakDetector you will use a more advanced
testing technique: you will build a testbench treids a series of data values from a
text file andplugs them into the Lab4PeakDetector . This will let you develop
more complicated sequences of inputs to perfornemeneful, directed testing

Figure 3 below is an well commented example of stbench using the
$readmemh process to read hexadecimal test valoesd file. Please make sure you
understand it. For more information on theeadmemh process, please refer to the
IEEE Verilog Reference

https://www-inst.eecs.berkeley.edu/~cs150/Protédbed/verilog-ieee.pdf

Figure 3: $readmemh Example Testbench & Data File

4.2 Designing Test Hardware

Because it proves beyond all doubt that a circwotke as desired, we really
would like to exhaustively test every single Vegilanodule that we build or use.
However simulation runs at abodt millionth of the speed of actual hardware

ucB 6 2007

EECS150 Fall 2007 Lab 4

Coupled with circuits like a 16bit adder, which Ha2bits of input requiring 2 = 4
billion test vectors this seriously hinders our efforts to exhaustivelmulate our
modules. Therefore we test circuits like theb4Part2Adder module, a 16bit adder
in hardwarewhere at 27MHz, 4 billion tests take a mere 2 minets, 40 seconds

In this part of the lab yowill be designing and building specialized piece of
test hardware, Lab4Part2Tester , designed to test tHeab4Part2Adder module.
In order to make this assignment realistic we hgiven you arEDIF black box for the
Lab4Part2Adder , namelyLab4Part2Adder.edf. This file can beasily synthesized
but it cannot be simulatedand it isnearly impossible to read

To help you design youLab4Part2Tester , the Lab4Part2Adder has
four different Fail Modes. The adder will fail in different ways depending which
Fail Mode you select o08W9[2:1]. If the Fail Mode is 2’b00 (0) the adder willwork
perfectly, and in2’b10 (2) it will fail on the inputs 0001, 0001 reporting that theisum
is 0003 rather than 0002. This information should hedp debug your test harness.

In order to help you we have included fRegister.vandCounter.v files which
you may wish to use.

Signal Width | Dir | Description

A 16 I The first input to the addeBljown on DD1-DD4

B 16 I The second inpuSpown on DD5-DD§

Sum 16 0] The sum from the adder (possibly incorrect)
(Shown on DD5-DD8 when SW10[1] is 9n

FailMode 2 I Used to set the fail modBrom SW9[2:1])

Table 3: Port Specification for Lab4Part2Adder

In order to make this a realistic teste adder may fail anywhere from O to 4
times in each fail mode(except 0), and you will need to kndwow the adder has
failed. Thus your tester must be designegamse when it encounters an erroland
then continue after you have recorded the errar

SW1 should Reset your Lab4Part2Tester to prepare it fortesting a
specific fail mode Go (SW2) should therstart the test processallowing it tofree run
until the tester discovers an erro¥When an error is encountered the tester should
pause and assert thé&rror output. You may then us&W10[1] to switch between
seeingA andB and seeing th8umas reported by theab4Part2Adder . When you
haverecorded the error on the Checkoff Sheetyou shouldressGo again to resume

testing.

Signal Width | Dir | Description

A 16 O The first input to the adde8l{fown on DD1-DD4

B 16 O The second inpuSfiown on DD5-DD§

Sum 16 0] The sum from the adder (possibly incorrect)
(Shown on DD5-DD8 when SW10[1] is gn

FailMode 2 I Used to set the fail modBrom SW9[2:1])

Go 1 I Signal to start or continue testirfg\{/2)

Clock 1 I System Clock

Reset 1 I System ReseBW1)

Running 1 @) Indicates that a test has been started andhthatll

ucB 7 2007

EECS150 Fall 2007

Lab 4

possible inputs have been tested yet
(Shown on D1-D4

Error

1 O Indicates that the tester is paused with aor¢

(Shown on D5-D§

2Ir

Table 4: Port Specification for Lab4Part2Tester

IN ORDER TO PROPERLY SYNTHESIZE A BLACK BOX, SUCH AS THE
LABAPART2ADDER.EDF FILE WE HAVE GIVEN YOU, YOU MUST TAKE A FEW EXTRA STEPS
DURING THE XILINX PROJECT NAVIGATOR PROJECT SETUP.

1. Make sure to add the shell Verilog filkap4Part2Adder.v) to your
project.
2. Set the Macro Search Path
Make sure FPGA_TOP2.v is highlighted in theSources in

a.

b.

c.
d.

Project Box.

Right-Click on Implement Designin the Processes for Source

Box.
Go to theTranslate Propertiestab

Set theMacro Search Path to thalirectory where your copy of

Lab4Part2Adder.edf resides

3. Your project should now be able to Synthesize amglement properly.

4.3 Exhaustive FSM Testing
Download the Lab4Part3.bit file to the CaLinx2 boad. This will program the

board with a very simple circuit, namely the FSMwh in Figure 4 below. You can do

this by running the iIMPACT directly from the Stafenu Start > Programs > Xilinx

ISE 6 > Accessories > iIMPACT.

Devices thenSlave Serial Modeand then open the bitfile file provided.

In the dialog boxes that appear, seléonfigure

ucB

2007

EECS150 Fall 2007 Lab 4

1
1
1%()
@
0

0
|
0

1

S3

[Output 1'b1]

Figure 4: Sequence Detector FSM

This simple FSM is @equence detectqrwhich has the state diagram shown in
Figure 4. The circuit receives a 1bit input onrgvelock cycle and asserts the output
when itdetects the sequence 018s long as theequence 100 has never been received
If a 100 sequence is received, the circuit haltd #re only way to resume normal
operation is by resetting it.

The bitfile contains some error, which you shouiddf by performing an
exhaustive test on the state machineThe idea is t@xercise every arand make sure
that thestate transition as well as theutput is correct.

In order to do this efficiently you should prepaesequence of inputs that
exercises all the arcs and go through it duringéseé Preparing this test sequence is not
a trivial task and gets exponentially more difftonith the size of the FSM.

To perform the test on the board:

1. Thelnput can be set 08W9[1]
a. Thelnput will appear orDD7
TheOutput will appear orDD8
The State will appear orDD1
SW1will Resetthe FSM
SW2 will Enable the FSM
a. The FSM will stay in its current state until yolepsSW2

As you test this FSMjraw a corrected bubble-and-arc diagramon the back of
your Checkoff Sheet. You will not need to corrdat errors in this FSM as we will not
be distributing the source code to it.

abrwn

ucB 9 2007

EECS150 Fall 2007

Lab 4

5.0 LAB 4 CHECK-OFF

ASSIGNED: Week of 2/11
DuE: Week of 2/18, 10 minutes after start (xx:20) of your assigned lab section.
Man Hours Spent Total Points TA Initial Date Time
/ 100 02/ /07
I Bottom Up Testing
1 Lab4Compl
(Testbench & Errors) (10%)
2 Lab4Comp4
(Testbench & Errors) (10%)
3
Lab4PeakDetector (Testbench & Errors) (10%)
Il Designing Test Hardware (40%)
1 Fail Mode 1
A B Bad Sum
2 Fail Mode 2
ucB 10 2007

EECS150 Fall 2007

Lab 4

0001 0001 0003

3 Fail Mode 3

i Exhaustive FSM Testing (30%)
1 Draw the
corrected FSM Bubble-and-Arc on back of this sheet
ucB 11 2007

EECS150 Fall 2007

Lab 4

RevC - 1/30/2005 Greg Updated to Lab4
Gibeling Removed Part4 to Lab6
RevB - 7/13/2004 Greg Complete Rewrite of Lab4
Gibeling Based on the old Lab4
RevA Multiple Original Lab4 from Fa02-Fa03
Spring 2004: Greg Gibeling
Fall 2003: Greg Gibeling
Spring 2003: Sandro Pintz
Fall 2002: John Wawrzynek & L.T. Pang
ucB 12 2007

