
CS 152 Laboratory Exercise 5

Professor: Sophia Shao
Department of Electrical Engineering & Computer Sciences

University of California, Berkeley

April 18, 2023

Revision History

Revision Date Author(s) Description

1.1 2023-04-18 Jamie Hong Update setup and spec
1.0 2022-04-08 hngenc Initial release

1 Introduction and Goals

The goal of this laboratory assignment is to allow you to explore shared memory multi-
processor systems using the Chisel simulation environment. You will be provided a com-
plete implementation of a dual-core Rocket processor supporting the RV64GC ISA. You
will write multi-threaded C programs to gain a better understanding of how data-level
parallel (DLP) code maps to multi-core processors and to practice optimizing code for
different cache coherence protocols.

While students are encouraged to discuss solutions to the lab assignments with each other,
you must complete the directed portion of the lab yourself and submit your own work
for these problems. For the open-ended portion of each lab, students can either work
individually or in groups of two or three. Each group will turn in a single report for the
open-ended portion of the lab. You are free to participate in different groups for different
lab assignments.

1.1 Graded Items

All code and reports are to be submitted through Gradescope. Please label each section
of the results clearly. All directed items need to be turned in for evaluation.

• (Directed) Problem 3.3: Naive vvadd results for MSI
• (Directed) Problem 3.4: Naive vvadd results for MI and analysis
• (Directed) Problem 3.5: Optimized vvadd code, results, and analysis

• (Open-ended) Problem 4: Optimized matmul code, results, and analysis
• (Directed) Problem 5: Feedback

2 Background

2.1 Dual-Core Rocket Processor

Rocket will be returning from Lab 2, but this time, there are two Rocket cores.

Figure 1: Rocket pipeline
Rocket is a 5-stage, single-issue, fully-bypassed, in-order RISC-V core. The configurations
used in this lab implement the RV64IMAFDC instruction set variant1, which refers to the
64-bit RISC-V base ISA (RV64I) along with a set of useful extensions [1]: M for integer
multiply/divide, A for atomic memory operations, F and D for single- and double-precision
floating-point, and C for 16-bit compressed representations of common instructions
Rocket also supports the RISC-V privileged architecture [2] with machine, supervisor,
and user modes. It has an MMU that implements the Sv39 virtual memory scheme,
which provides 39-bit virtual address spaces with 4 KiB pages. These processors are fully
capable of booting mainstream operating systems such as Linux; however, no OS will be
used in this lab, so code will run “bare metal” in M-mode.

2.2 Memory System
In this lab, you are provided with a dual-core system that utilizes a snoopy cache coherence
protocol. Figure 2 shows the high-level block diagram.

On-Chip

Main Memory

Rocket
Core

Rocket
Core

I-cache D-cache I-cache D-cache

Bus

1 Also known as RV64GC, with G (“general-purpose”) being the canonical shorthand for “IMAFD”

CS 152 Lab 5 2

Figure 2: The dual-core Rocket system. A logical bus connects the caches and main mem-
ory. In practice, the bus is implemented as a crossbar with a coherence hub that arbitrates
access to the “bus,” initiates coherence “probe” traffic across the bus, and orchestrates the
cache coherence protocol.
Each Rocket core has its own private L1 caches:

• 16 KiB 4-way set-associative L1 instruction cache
• 4 KiB 4-way set-associative L1 data cache

The data caches are kept coherent with one another.
An off-chip memory provides the last level of the memory hierarchy. Both cores are
connected via a bus to main memory, which is backed by a DRAM model that simulates
the functional and timing behaviors of a DDR3 memory system. Only one agent may
access the bus at a time.
Conceptually, cache coherence is maintained by having caches broadcast their intentions
across the bus and “snooping”, or monitoring, the actions of the other caches.

2.3 Multi-threaded Programming Environment
In most conventional multi-threaded programming environments, one thread begins exe-
cution at main(), which must then call some sort of spawn or clone() function to create
more threads with assistance from the operating system.
In contrast, we will not be using an OS in this lab. Instead, all threads enter main()
roughly simutaneously after a designated “boot” thread finishes initializing the C runtime
environment. Each thread is provided with ncores (the number of cores in the system)
and a coreid (a unique numerical identifier from 0 to ncores− 1, inclusive).

2.3.1 Memory Allocation
You will need to be careful how you allocate memory in your code. Local variables can be
allocated on the stack as usual; however, each thread is reserved only a limited amount
of stack space. You will want to use the static keyword to allocate variables statically
in the executable image, where it is visible to all threads.
There is also the __thread storage class keyword, which denotes a thread-specific variable
that should be located in thread-local storage (TLS). TLS is a mechanism by which each
thread is given its own private instance of the variable. It requires significant orchestration
between the linker and system libraries to work, but this complexity is largely transparent
to user code.2

2.3.2 Synchronization Primitives
In the software framework, a barrier() function is provided to synchronize threads. Once
a thread reaches the barrier() function, it waits until all threads in the system have
reached the same barrier(). Implicit in the barrier is a memory fence. The barrier()
function should probably be sufficient to implement any algorithm necessary in this lab.
For more information on the RISC-V memory ordering instructions, consult Section 2.7
of the user-level ISA manual [1]. Section 14 defines the RVWMO (RISC-V weak memory
ordering) memory consistency model. Appendix A offers a more in-depth explanation of
the rationale behind RVWMO.
2 http://people.redhat.com/drepper/tls.pdf

CS 152 Lab 5 3

http://people.redhat.com/drepper/tls.pdf

The RISC-V fence instruction can be inserted in C code using the
__sync_synchronize() GCC built-in function (saving you the hassle of inlining
assembly). The GCC compiler provides more built-in functions for atomic memory
accesses, such as __sync_fetch_and_add().3

The fence instruction behaves as follows: If the data cache is not busy, the fence imme-
diately retires, the pipeline continues execution. If the cache is busy servicing outstanding
memory requests (i.e., cache misses), the fence stalls the pipeline until the cache is no
longer busy. In this manner, the fence instruction ensures that all memory operations
before the fence have completed before any memory operations after the fence are issued.4

2.3.3 Warnings and Pitfalls
• The stack space provided to each thread is only 24 KiB. As there is no virtual

memory protection, there will be no warning if you overrun your stack. Try to
allocate arrays and other large data structures statically.

• printf() can be used to debug your code. However, it is up to you to ensure
that it is called by only one thread at a time; otherwise, the output may be im-
comprehensibly interleaved. Also, the printf implementation in this lab (provided
by a stripped-down version of newlib, an embedded C library) does not support
formatting floating-point types. You will have to cast them to integer types first.
However, you will note that the randomly generated test vectors are actually using
whole numbers for convenience.

3 https://gcc.gnu.org/onlinedocs/gcc/_005f_005fsync-Builtins.html
4 Finer-grained fences can be performed by setting the predecessor and successor fields in the instruction,
which define which types of accesses (memory reads, memory writes, device reads, device write) should
be ordered.

CS 152 Lab 5 4

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fsync-Builtins.html

3 Directed Portion (25%)
3.1 General Methodology

This lab will focus on writing multi-threaded C code. This will be done in two steps:
1. Build the Verilog cycle-accurate emulator of the dual-core processor (if the cache

coherence protocol needs to be changed)
2. Verify the correctness and measure the performance of your code on the cycle-

accurate emulator

3.2 Setup
To complete this lab, ssh into an instructional server with the instructional comput-
ing account provided to you. The lab infrastructure has been set up to run on the
eda{1..8}.eecs.berkeley.edu machines (eda-1.eecs, eda-2.eecs, etc.).
Once logged in, source the following script to initialize your shell environment so as to be
able to access to the tools for this lab. Run it before each session.

eecs$ source ~cs152/sp23/cs152.lab5.bashrc

First, clone the lab materials into an appropriate workspace and initialize the submodules.

eecs$ mkdir /scratch/$USER
eecs$ cd /scratch/$USER
eecs$ git clone ~cs152/sp23/lab5.git
eecs$ cd lab5
eecs$ LAB5ROOT="$(pwd)"
eecs$./scripts/init-submodules-no-riscv-tools.sh

The remainder of this lab will use ${LAB5ROOT} to denote the path of the lab5 working
tree. Its directory structure is outlined below:

${LAB5ROOT}
lab/ Benchmark source code

mt-vvadd-naive/ Naive vvadd code
mt-vvadd-opt/ Optimized vvadd code
mt-matmul-naive/ Naive matmul code
mt-matmul-opt/ Optimized matmul code

generators/ Library of RTL generators
chipyard/ SoC configurations
rocket-chip/ Rocket Chip generator
testchipip/ RTL blocks for interfacing with test chips
...

sims/
verilator/ Verilator simulation flow
vcs/ Synopsys VCS simulation flow
...

tools/
chisel3/ Chisel hardware description library
firrtl/ RTL intermediate representation library
barstools/ Collection of common FIRRTL transformations
...

CS 152 Lab 5 5

3.3 Measuring Vector-Vector Add with MSI Coherence
First, to acclimate ourselves to the Lab 5 infrastructure, we will gather the results of a
poorly written implementation of vvadd, which performs a simple vector-vector addition.
Navigate to the ${LAB5ROOT}/lab/mt-vvadd-naive directory, which has a few files of
interest. First, dataset.h holds a static copy of the input vectors and expected results
vector.5 Second, mt-vvadd_main.c contains code for managing the benchmark, which in-
cludes initializing the state of the program, calling the vvadd function itself, and verifying
the output of the function. Lastly, a very poor implementation of multi-threaded vvadd
can be found in mt-vvadd_naive.c.
Build the simulator and run the mt-vvadd-naive benchmark on a dual-core configuration
with an MSI coherence policy.

eecs$ cd ${LAB5ROOT}/sims/verilator
eecs$ make CONFIG=Lab5MSIDualRocketConfig run-mt-vvadd-naive

make will automatically rebuild the simulator and benchmarks programs if changes to the
sources are detected. The CONFIG variable instructs the generator to use the configuration
with two cores and MSI coherence.
Note that the first time you build Lab5MSIDualRocketConfig and
Lab5MIDualRocketConfig, it will take a while for verilator to build the configura-
tions. However, after the first time, running the make commands should take much
faster.
You should see something similar to the following output for mt-vvadd-naive, which
comes from timing a section of code that calls the vvadd_naive() function:

vvadd_naive: 37481 cycles, 37.4 cycles/iter, 8.2 CPI
Note what the suboptimal mt-vvadd-naive results are with the MSI coherence protocol.! →
This will serve as a good reference point when you begin optimizing the performance of
the vector-vector add.

3.4 Measuring Vector-Vector Add with MI Coherence
Run the mt-vvadd-naive benchmark again but using an MI coherence policy.

eecs$ cd ${LAB5ROOT}/sims/verilator
eecs$ make CONFIG=Lab5MIDualRocketConfig run-mt-vvadd-naive

Note what the mt-vvadd-naive results are with the MI coherence protocol. This will serve! →
as a good reference point when you begin optimizing the performance of the vector-vector
add.
Some things to consider:
Taking into account that the code is executed on a multi-core cache-coherent system,
consider the naive implementation in textttvvadd_naive(). Why is it suboptimal on MI
and MSI? What are some potential changes you could make to improve the performance?

3.5 Optimizing Multi-Threaded Vector-Vector Add
Now that you know how to run benchmarks, gather performance results, and change the
cache coherence protocol, you can now optimize vvadd for the dual Rocket cores.
5 For rapid testing, you can generate your own input arrays that are a smaller size using mt-vvadd_

CS 152 Lab 5 6

Write your code in the vvadd_opt() function found in ${LAB5ROOT}/lab/mt-vvadd-opt/
mt-vvadd_opt.c, and then run the mt-vv-addopt benchmark as follows.

eecs$ cd ${LAB5ROOT}/sims/verilator
eecs$ make CONFIG=Lab5MIDualRocketConfig run-mt-vvadd-opt
eecs$ make CONFIG=Lab5MSIDualRocketConfig run-mt-vvadd-opt

Try seeing what results you get for your optimized implementation with both the MI and! →
MSI protocols. What did you do differently to achieve better performance over the naive
vvadd? You should be able to reduce the number of cycles per iteration to about 60% of
the naive implementation under MSI.

3.5.1 Submission
Use the following command to prepare your code for submission, and upload the resulting
mt-vvadd.zip file to the Gradescope autograder.

eecs$ cd ${LAB5ROOT}/lab
eecs$ make zip-vvadd

Note that code outside of mt-vvadd_opt.c will be ignored.
There is no written section for the directed portion that you need to submit.

3.5.2 Vector-Vector Add Tips
Refer back to Section 2.3.3 for potential pitfalls with programming in this bare-metal en-
vironment. Remember that you can use printf() for debugging, with caveats: Floating-
point values are not supported, and make sure only one thread calls printf() at a time.
The benchmark prints the contents of the output_data and verify_data arrays if a
mismatch is found.
To see what each core is doing cycle by cycle, look at the trace in ${LAB5ROOT}/sims/
verilator/output/chipyard.TestHarness.*/mt-vvadd-opt.riscv.out, where * is the
chosen CONFIG. The output from core 0 and core 1 is prefixed with C0: and C1:, respec-
tively. The disassembly in ${LAB5ROOT}/lab/mt-vvadd-opt.riscv.dump may be useful
for understanding the trace.
You can force make to repeat the simulation by manually removing the mt-vvadd-opt.
riscv.out file from the simulator output directory.
If you encounter an error, you can first debug your code in the ISA-level simulator.

eecs$ cd ${LAB5ROOT}/lab
eecs$ make
eecs$ spike -p2 mt-vvadd-opt.riscv

The -p option sets the number of simulated hardware threads.
Note that spike is not a cycle-accurate processor model, and the “performance” numbers
can be distorted since the hardware threads do not execute concurrently (unlike our actual
system) but are switched after 5000 instructions. Also, this coarse-grained interleaving
does not expose every race condition that would be possible on hardware.

gendata.py.

CS 152 Lab 5 7

4 Open-Ended Portion: Optimizing Multi-Threaded Matrix Multiply (75%)
For this problem, you will implement and optimize a multi-threaded version of matrix-
matrix multiply.
A naive implementation can be found in ${LAB5ROOT}/lab/mt-matmul-naive/
mt-matmul_naive.c. First build and run the mt-matmul-naive benchmark to measure
the baseline performance.

eecs$ cd ${LAB5ROOT}/sims/verilator
eecs$ make CONFIG=Lab5MIDualRocketConfig run-mt-matmul-naive
eecs$ make CONFIG=Lab5MSIDualRocketConfig run-mt-matmul-naive

Write your code in the matmul_opt() function found in ${LAB5ROOT}/lab/
mt-matmul-opt/mt-matmul_opt.c, and then run the mt-matmul-opt benchmark as fol-
lows.

eecs$ make CONFIG=Lab5MIDualRocketConfig run-mt-matmul-opt
eecs$ make CONFIG=Lab5MSIDualRocketConfig run-mt-matmul-opt

Once your code passes the correctness test, do your best to optimize its performance.
Your results from the MI and MSI runs will be averaged together. Go crazy!

4.1 Submission
Use the following command to prepare your code for submission, and upload the resulting
mt-matmul.zip file to the Gradescope autograder.

eecs$ cd ${LAB5ROOT}/lab
eecs$ make zip-matmul

Note that code outside of mt-matmul_opt.c will be ignored.
If you were not able to get the performance you desired on the Gradesceop autograder, you! →
may submit an optional written report, presenting 3 to 5 significant ideas you tried for
improving performance along with some analysis for each idea.

4.2 Matrix Multiply Tips
A number of strategies can be used to optimize your code for this problem. First, the
problem size is for 32× 32 matrices of int elements, with a total memory footprint of 12
KiB (the L1 data cache is only 4 KiB, 4-way set-associative). Common techniques that
generally work well are loop unrolling, lifting loads out of inner loops and scheduling them
earlier, blocking the code to utilize the full register file, transposing matrices to achieve
unit-stride accesses to make full use of the L1 cache lines, and loop interchange.
You will also want to minimize sharing between cores; in particular, you will want to
have each core responsible for writing its own pieces of the arrays (to avoid false sharing
that causes lines to ping-pong between caches). Under the MI coherence protocol, it is
also useful to avoid having both cores access the same portions of the input arrays at any
given time, as there is no “S” state to accommodate shared lines.

CS 152 Lab 5 8

5 Feedback Portion
5.1 Lab Group Feedback

Please complete this short survey regarding your lab group this semester by following the
link: Survey for lab group feedback.

6 Acknowledgments
This lab was made possible through the hard work of Andrew Waterman and Henry Cook
(among others) in developing the Rocket processor, memory system, cache coherence
protocols, and multi-threading software environment. This lab was originally developed
for CS152 at UC Berkeley by Christopher Celio.

References
[1] A. Waterman and K. Asanović, Eds., The RISC-V instruction set manual, volume I:

User-level ISA, Version 20191213, RISC-V Foundation, Dec. 2019. [Online]. Available:
https://riscv.org/specifications/.

[2] A. Waterman and K. Asanović, Eds., The RISC-V instruction set manual, volume II:
Privileged architecture, Version 20190608-Priv-MSU-Ratified, RISC-V Foundation,
Jun. 2019. [Online]. Available: https://riscv.org/specifications/privileged-
isa/.

CS 152 Lab 5 9

https://docs.google.com/forms/d/e/1FAIpQLSeMhi5pV_xvC4y1qD2UkWDN8utLXxzVcmvV3syLk90uS0viDQ/viewform?usp=sf_link
https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/

	Introduction and Goals
	Graded Items

	Background
	Dual-Core Rocket Processor
	Memory System
	Multi-threaded Programming Environment
	Memory Allocation
	Synchronization Primitives
	Warnings and Pitfalls

	Directed Portion (25%)
	General Methodology
	Setup
	Measuring Vector-Vector Add with MSI Coherence
	Measuring Vector-Vector Add with MI Coherence
	Optimizing Multi-Threaded Vector-Vector Add
	Submission
	Vector-Vector Add Tips

	Open-Ended Portion: Optimizing Multi-Threaded Matrix Multiply (75%)
	Submission
	Matrix Multiply Tips

	Feedback Portion
	Lab Group Feedback

	Acknowledgments

