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The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office hours to 
understand the problems. However, each student must turn in their own solution to the problems. 
 
The problem sets also provide essential background material for the exam and the midterms. The 
problem sets will be graded primarily on an effort basis, but if you do not work through the 
problem sets yourself you are unlikely to succeed on the exam or midterms! We will distribute 
solutions to the problem set on the day after the deadline to give you feedback. 
 
Assignments must be submitted through Gradescope by 11:59pm PST on the specified due 
date. Late submissions will not be accepted, except for extreme circumstances and with prior 
arrangement. 
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Problem 1: Sequential Consistency 

 
For this problem we will be using the following sequences of instructions. These are small 
programs, each executed on a different processor, each with its own cache and register set. In the 
following R is a register and X is a memory location. Each instruction has been named (e.g., B3) 
to make it easy to write answers. 
 
Assume data in location X is initially 0. 
 

Processor A Processor B Processor C 
A1: ST X, 2 B1: R := LD X C1: ST X, 7 
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X 
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R 
A4: ST X, R B4: R:= LD X C4: ST X, R 
 B5: R := ADD R, R  
 B6: ST X, R  

 
 
For each of the questions below, please circle the answer and provide a short explanation 
assuming the program is executing under the SC model. No points will be given for just 
circling an answer! 
 
 
Problem 1.A 

 
Can X hold value of 8 after all three threads have completed? Please explain briefly. 
 
Yes / No 
 
 
 
 
 
 
 
 
 
Problem 1.B 

 
Can X hold value of 9 after all three threads have completed? 
 
Yes / No



 

 

 
Problem 1.C 

 
Can X hold value of 10 after all three threads have completed? 
 
Yes / No 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Problem 1.D 

 
For this particular program, can a processor that reorders instructions but follows local 
dependencies produce an answer that cannot be produced under the SC model? 
 
Yes / No



 

 

 
Problem P5.2: Synchronization Primitives 

 
One of the common instruction sequences used for synchronizing several processors are the 
LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair). 
The LdR instruction reads a value from the specified address and sets a local reservation for the 
address. The StC attempts to write to the specified address provided the local reservation for the 
address is still held. If the reservation has been cleared the StC fails and informs the CPU. 
 
 
Problem 2.A 

 
Describe under what events the local reservation for an address must be cleared. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 2.B 

 
Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e., 
unaware of the addition of these new instructions? Explain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Problem 2.C 

 
Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	



 

 

 
Problem 3: Relaxed Memory Models 

 
The following code implements a seqlock, which is a reader-writer lock that supports a single 
writer and multiple readers. The writer never has to wait to update the data protected by the 
lock, but readers may have to wait if the writer is busy. We use a seqlock to protect a variable 
that holds the current time. The lock is necessary because the variable is 64 bits and thus cannot 
be read or written atomically on a 32-bit system. 
 
The seqlock is implemented using a sequence number, seqno, which is initially zero. The writer 
begins by incrementing seqno. It then writes the new time value, which is split into the 32-bit 
values time_lo and time_hi. Finally, it increments seqno again. Thus, if and only if seqno is odd, 
the writer is currently updating the counter. 
 
The reader begins by waiting until seqno is even. It then reads time_lo and time_hi. Finally, it 
reads seqno again. If seqno didn't change from the first read, then the read was successful; 
otherwise, the read is retried. 
 
This code is correct on a sequentially consistent system, but on a system with a fully relaxed 
memory model it may not be. Insert the minimum number of memory fences to make the code 
correct on a system with a relaxed memory model. To insert a fence, write the needed fence 
(MembarLL, MembarLS, MembarSL, MembarSS) in between the lines of code below. 
 

Writer Reader 

LOAD  Rseqno,(seqno) 
 
ADD  Rseqno, Rseqno, 1 
 
STORE  (seqno), Rseqno 
 
STORE  (time_lo), Rtime_lo 
 
STORE  (time_hi), Rtime_hi 
 
ADD  Rseqno, Rseqno, 1 
 
STORE  (seqno), Rseqno 

Loop: 
 LOAD Rseqno_before, (seqno) 
 
 IF(Rseqno_before & 1) 
  goto Loop 
 
 LOAD Rtime_lo, (time_lo) 
 
 LOAD Rtime_hi, (time_hi) 
 
 LOAD Rseqno_after, (seqno) 
 
 IF(Rseqno_before != 
Rseqno_after)  
  goto Loop 

 
 



 

 

Problem 4: Locking Performance 
 
While analyzing some code, you find that a big performance bottleneck involves many threads 
trying to acquire a single lock. 
 
Conceptually, the code is as follows: 
 
int mutex = 0; 

 
while( true ) 
{ 
noncritical_code( ); 

 
lock( &mutex ); 
critical_code( ); 
unlock( &mutex ); 

}  
 
Assume for all questions that our processor is using a directory protocol, as described in Handout 
#6. 
 
 
Test&Set Implementation 
 
First, we will use the atomic instruction test_and_set to implement the 
lock(mutex) and unlock(mutex) functions. 
 
In C, the instruction has the following function prototype: 
 

int return_value = test_and_set(int* maddr); 
 
Recall that test_and_set atomically reads the memory address maddr and writes a 1 
to the location, returning the original value. 
 
Using test_and_set, we arrive at the following first-draft implementation for the 
lock() and unlock() functions: 
 
void inline lock(int* mutex_ptr) 
{ 

while(test_and_set(mutex_ptr) == 1); 
} 
 
void inline unlock(int* mutex_ptr) 
{ 

*mutex_ptr = 0; 
}



 

 

Problem 4.A Test&Set, The Initial Acquire 

 
Let us analyze the behavior of Test&Set while running 1,000 threads on 1,000 cores. 
 
Consider the following scenario: At the start of the program, the lock is invalid in all caches. 
Then, every thread executes Test&Set once. The first thread wins the lock, while the other 
threads will find that the lock is taken. How many invalidation messages must be sent when all 
1,000 threads execute Test&Set once? 
 
 
 
 
 
 

Invalidations _______ 
 
 
Problem 4.B Test&Set, Spinning 

 
While the first thread is in the critical section (the “winning thread”), the remaining threads 
continue to execute Test&Set, attempting to acquire the lock. Each waiting thread is able to 
execute Test&Set five times before the winning thread frees the lock. How many 
invalidation messages must be sent while the winning thread was executing the critical section? 
 
 
 
 
 
 

Invalidations _______ 

 
 
 
Problem 4.C Test&Set, Freeing the Lock 

 
How many invalidation messages must be sent when the winning thread frees the lock? Assume 
the critical section is very long, and all 999 other threads have been waiting to acquire the lock. 
 
 
 
 
 
 
 
 

Invalidations _______



 

 

Test&Test&Set Implementation  
Since our analysis from the previous parts show that a lot of invalidation messages must be sent 
while waiting for the lock to be freed, let us instead use a regular load alongside the atomic 
instruction test&set to implement the mutex lock.  
 
void inline lock(int* mutex_ptr) 
{ 

while((*mutex_ptr == 1) || test&set(mutex_ptr) == 1); 
} 
 
void inline unlock(int* mutex_ptr) 
{ 

*mutex_ptr = 0; 
} 
  
(Note: the loop evaluation is short-circuited if the first part is true; thus, test&set is only 
executed if (*mutex_ptr) does not equal 1). 
 
Problem 4.D Test&Set&Set, The Initial Acquire 

 
Let us analyze the behavior of Test&Test&Set while running 1,000 threads on 1,000 cores. 
 
Consider the following scenario: At the start of the program, the lock is invalid in all caches. 
Then every thread performs the first Test (reading mutex_ptr) once. After every thread has 
performed the first Test (which evaluates to False, because mutex == 0), each thread then 
executes the atomic Test&Set once. Naturally, only one thread wins the lock. How many 
invalidation messages must be sent in this scenario? 
 

Invalidations _______ 
  

Problem 4.E Test&Set&Set, Spinning 
 
While the first thread is in the critical section, the remaining threads continue to execute 
Test&Test&Set. Each waiting thread is able to execute Test&Test&Set five times 
before the winning thread frees the lock. How many invalidation messages must be sent while 
the winning thread was executing the critical section? 
 
 

Invalidations _______ 
  

Problem 4.F Test&Set&Set, Freeing the Lock 
 
How many invalidation messages must be sent when the winning thread frees the lock for the 
Test&Test&Set implementation? Assume the critical section is very long, and all 999 
other threads have been waiting to acquire the lock. 
 
 

Invalidations _______



 

 

Problem 5: Directory-based Cache Coherence Update Protocols 
 
Please refer to Handout #6 (on website) for this problem. 
In Handout #6, we examine a cache-coherent distributed shared memory system. Ben wants to 
convert the directory-based invalidate cache coherence protocol from the handout into an update 
protocol. He proposes the following scheme. 
 
Caches are write-through, not write allocate. When a processor wants to write to a memory 
location, it sends a WriteReq to the memory, along with the data word that it wants written. The 
memory processor updates the memory and sends an UpdateReq with the new data to each of 
the sites caching the block, unless that site is the processor performing the store, in which case it 
sends a WriteRep containing the new data. 
 
If the processor performing the store is caching the block being written, it must wait for the reply 
from the home site to arrive before storing the new value into its cache. If the processor 
performing the store is not caching the block being written, it can proceed after issuing the  
WriteReq. 
 
Ben wants his protocol to perform well, and so he also proposes to implement silent drops. When 
a cache line needs to be evicted, it is silently evicted and the memory processor is not notified of 
this event. 
 
Note that WriteReq and UpdateReq contain data at the word-granularity, and not at the block-
granularity. Also note that in the proposed scheme, memory will always have the most up-to-date 
data and the state C-exclusive is no longer used. 
 
As in the lecture, the interconnection network guarantees that message-passing is reliable, and 
free from deadlock, livelock, and starvation. Also as in the lecture, message-passing is FIFO, 
meaning; each home site keeps a FIFO queue of incoming requests and processes them in the 
order received. 
 
Problem 5.A Sequential Consistency 

 
Alyssa claims that Ben’s protocol does not preserve sequential consistency because it allows two 
processors to observe stores in different orders. Describe a scenario in which this problem can 
occur.



 

 

 
Problem 5.B State Transitions 

 
Noting that many commercial systems do not guarantee sequential consistency, Ben decides to 
implement his protocol anyway. Fill in the following state transition tables (Table P5.5-1 and 
Table P5.5-2) for the proposed scheme. (Note: the tables do not contain all the transitions for the 
protocol). 
 
No. Current State Event Received Next State Action 

1 C-nothing Load C-transient ShReq(id, Home, a) 

2 C-nothing Store   

3 C-nothing UpdateReq   

4 C-shared Load C-shared processor reads cache 

5 C-shared Store   

6 C-shared UpdateReq   

7 C-shared (Silent drop)  Nothing 

8 C-transient ShRep  data à cache, processor reads cache 

9 C-transient WriteRep   

10 C-transient UpdateReq   

   Table P5.5-1: Cache State Transitions 

No. Current State  Message Next State Action 
   Received   

1 R(dir) & id Ï dir ShReq R(dir + {id}) ShRep(Home, id, a) 

2 R(dir) & id Ï dir WriteReq   

3 R(dir) & id Î dir ShReq  ShRep(Home, id, a) 

4 R(dir) & id Î dir WriteReq   

   Table P5.5-2: Home Directory State Transitions (N = “is not in”) 



 

 

 
Problem 5.C UpdateReq 

 
After running a system with this protocol for a long time, Ben finds that the network is flooded 
with UpdateReqs. Alyssa says this is a bug in his protocol. What is the problem and how can 
you fix it? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 5.D FIFO Assumption 

 
FIFO message passing is a necessary assumption for the correctness of the protocol. If the 
network were non-FIFO, it becomes possible for a processor to never see the result of another 
processor’s store. Describe a scenario in which this problem can occur. 



 

 

 
Problem 6: Snoopy Cache Coherent Shared Memory 

 
Please refer to Handout #7 (on website) for this problem. 
In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout 
#7. The following questions are to help you check your understanding of the coherence protocol. 
You do not need to answer these for credit. 
 
• Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the 

actions that must be taken by memory and by the different caches involved. 
• Explain why WR is not snooped on the bus. 
• Explain the I/O coherence problem that CWI helps avoid. 
 
 
Problem 6.A Where in the Memory System is the Current Value 

 
In Table P5.6-1, P5.6-2, and P5.6-3, column 1 indicates the initial state of a certain address X in 
a cache. Column 2 indicates whether address X is currently cached in any other cache. (The 
“cached” information is known to the cache controller only immediately following a bus 
transaction. Thus, the action taken by the cache controller must be independent of this signal, but 
state transition could depend on this knowledge.) Column 3 enumerates all the available 
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI, 
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are 
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7, 
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible 
locations where up-to-date copies of this data block could exist after the operation in 
column 3 has taken place and ignore column 4 and 5 for now. Table P5.6-1 has been completed 
for you. Make sure the answers in this table make sense to you. 
 
 
 
 
 
Problem 6.B MBus Cache Block State Transition Table 

 
In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5, 
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the 
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the 
protocol should be optimized such that data is supplied using CCI whenever possible, and only 
the cache that owns a line should issue CCI. 
 
 
 
 
 
 
 
 
 



 

 

initial state other ops actions by this final this other mem 
 

 cached  cache state cache caches  
 

Invalid no none none I   yes 
 

  CPU read CR CE yes  yes 
 

  CPU write CRI OE yes   
 

  replace none  impossible  
 

  CR none I  yes yes 
 

  CRI none I  yes  
 

  CI none  impossible  
 

  WR none  impossible  
 

  CWI none I   yes 
 

Invalid yes none  I  yes yes 
 

  CPU read  CS yes yes yes 
 

  CPU write 
same 

OE yes   
 

  replace  impossible  
 

  CR as I  yes yes 
 

  CRI above I  yes  
 

  CI  I  yes  
 

  WR  I  yes yes 
 

  CWI  I   yes 
 

        
 

initial state other ops Actions by this final this other mem 
 

 cached  cache state cache caches  
 

cleanExclusive no none none CE    
 

  CPU read      
 

  CPU write      
 

  replace      
 

  CR  CS    
 

  CRI      
 

  CI      
 

  WR      
 

  CWI      
 

Table P5.7-1 



 

 

 
initial state other ops Actions by this final this other mem 

 

 cached  cache state cache caches  
 

ownedExclusive no none none OE    
 

  CPU read      
 

  CPU write      
 

  replace      
 

  CR  OS    
 

  CRI      
 

  CI      
 

  WR      
 

  CWI      
 

        
 

initial state other ops actions by this final this other mem 
 

 cached  cache state cache caches  
 

cleanShared no none none CS    
 

  CPU read      
 

  CPU write      
 

  replace      
 

  CR      
 

  CRI      
 

  CI      
 

  WR      
 

  CWI      
 

cleanShared yes none      
 

  CPU read      
 

  CPU write 
same 

    
 

  replace     
 

  CR as     
 

  CRI above     
 

  CI      
 

  WR      
 

  CWI      
 

Table P5.7-2 
 



 

 

 
initial state other ops actions by this final this other mem 

 

 cached  cache state cache caches  
 

ownedShared no none none OS    
 

  CPU read      
 

  CPU write      
 

  replace      
 

  CR      
 

  CRI      
 

  CI      
 

  WR      
 

  CWI      
 

ownedShared yes none      
 

  CPU read      
 

  CPU write 
same 

    
 

  replace     
 

  CR as     
 

  CRI above     
 

  CI      
 

  WR      
 

  CWI      
 

Table P5.7-3 
 


