CS152 Spring 2023 Final Review

MICROCODING

Problem 2: (20 Points) Microcoding (CS152 ONLY)

In this problem, we explore microprogramming by writing microcode for a bus-based
implementation of the RISC-V machine. This microarchitecture is largely the same as the one
described in Handout #1, Problem Set 1, and Lab 2, with a few key differences. For clarity, we
have reproduced the full microarchitectural diagram with new control signals in boldface.
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New control signals

e ImmSel may take the value zero; this puts a zero on the bus when enImm is high

e Memory now receives an additional MemS1i ze control signal, which takes the value 0, 1,
or 2 to mean a 8-, 16-, or 32-bit load or store. Assume that load values are zero-extended,

and that the upper bits are ignored when performing stores of less than 32 bits.

e Memory may take multiple cycles to return—make sure to use spin states!

The final solution should be efficient with respect to the number of microinstructions used. Make
sure to use logical descriptions of data movement in the “pseudocode” column for clarity. Credit
will be awarded for realizing that signals may take a “don’t care” or X value, but this is less

important than producing a correct implementation!



2.A (15 points) Implement a strchridx instruction

Given a string of single-byte characters, find the first occurrence of a specified character. Return
the index of the first occurrence or -1 if the character does not appear in the string. If bits [31: 8]
of rs?2 are not all zero, the behavior of the instruction is undefined. When the instruction commits,
rsl and rs2 (and all other architectural registers other than rd) must have their original values!

strchridx rd, rsl, rs2

Arguments: rsl A pointer to the null-terminated string s
rs2 The character c to search for
Result: rd The index of the first appearance of c in s, or -1 if it doesn’t appear
For simplicity, you may assume that rd != rsl.

Fill in the microcode table on the next page.
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Problem 3: Unified Physical Register File Out-of-Order Machines

Throughout this question, assume the following machine specifications:
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e The machine can fetch, dispatch, issue, and commit at most one instruction per cycle.

o The processor runs the RISC-V instruction set with the F and D extensions.

o Assume every load hits in the single-cycle-hit L1 D$ (indicated as DC in the pipeline).

» Register renaming follows the Unified Physical Register File scheme.

o Unless otherwise directed, assume there are no bypass paths for data.

» Instructions are written into the ROB at the end of the DEC/RENT stage.

e Instructions are written into the issue window at the end of the REN2/DIS stage.

e Instructions are released from the issue window in the ISS stage.

e Commit is handled by a decoupled unit that looks at the ROB entries.

e Jump instructions issue and complete immediately on the same cycle that they dispatch.

e Assume all jump targets are perfectly predicted.

« Instructions may issue as soon as the same cycle that the writer of their last outstanding
operand is in the writeback stage.

e Ignore structural hazards on the register file ports

« Each functional unit has its own issue window, separate from the ROB



F) (14 points) Consider the following code sequence that begins at address 0x00010000

loop: f£f1ld £0, 0(a0)
fld £1, 0(al)
fadd.d £0, £0, f1
fsd £0, 0(a2)

addi a0, a0, 0x8
addi al, al, 0x8
addi a2, a2, 0x8
addi t0, t0, 0xl
bne t0, a3, loop

Assume that the machine enters this loop with all instructions fetched, zero valid entries in the

ROB, and the following initial rename table and free list contents before the first £1d enters the
ROB. Dequeue free list entries from the top.

Unused architectural registers are omitted from the rename table for clarity.

Arch. register Phys. register
a0 pl
al p5
a2 P33
3 pl7
t0 p4l
0 p62
f1 p28

Free List

p4
p55
pl8
p30
p39
pll
P59
p60




Now consider the case in which the fsd takes an exception. Fill in the following table which
describes the execution of each instruction) for eight instructions, beginning with the first fld. In
the “Time” columns, fill in the cycles in which the instruction dispatches, issues, completes, and
commits (if it commits), respectively.

PC Physical Register Specifiers Cycle #

PRd LPRd PR1 PR2 Dispatch Issue Complete | Commit

0x00010000

0x00010004

0x00010008

0x0001000cC

0x00010010

0x00010014

0x00010018

0x0001001cC




MULTITHREADING
(a) Thread Scheduling [6 pts]

Consider the loop below, performing a saturating addition of two vectors; Y[i], X[i], and MAX are all
of type int32.

for (int i = 0; 1 < N; i++) {

Y[i] += X[il;

if (Y[i] > MAX)
Y[i] = MAX;
}
In assembly, the loop is as follow:

# x1 is a pointer to the beginning of "X"
# x2 is a pointer to the beginning of "Y"
# x3 is "MAX"

# x4 is "i"

loop: 1d x5, 0(x1) # x5 has "X[i]"
1d %6, 0(x2) # x6 has "Y[i]"

addi x1, x1, 4 # increment X pointer
addi x2, x2, 4 # increment Y pointer
addi x4, x4, -1 # decrement "i"

add x7, xb, x6

blt x7, x3, skip_sat
mv x7, x3

skip_sat: sw x7, 0(x2)

bnez x4, loop
end:

Suppose that we run this loop on a multi-threaded 5-stage classic RISC processor where:
e Loads and stores have a latency of 20 cycles
e Taken branches have a latency of two cycles
e All other instructions (including non-taken branches) have a latency of one cycle

e There is perfect branch prediction

Do not reorder the instructions in the loop.



i. How many threads are needed to guarantee that we will never stall with fixed round-robin schedul-
ing?

ii. Suppose that we instead use a coarse-grained thread scheduling policy, which switches threads
whenever a stall would occur due to a RAW hazard or due to a taken branch. (WAR and WAW

hazards do not cause stalls).
How many threads are needed to guarantee that would never stall with this scheduling policy?

Consider only the steady-state execution.

(b) Short Questions [2 pts]
Suppose that we have two machines, A and B. They are both used to run a wide variety of multithreaded

workloads.

A has one CPU. The CPU is an Qo0 8-wide superscalar with SMT. Two threads can run simultaneously
on the CPU.

B has two CPUs. Each CPU is an Qo0 4-wide superscalar without multithreading,.

Check off the correct answers below:

i. A would be expected to have:
O the same clock cycle time as B?
O a lower clock cycle time than B?
O a higher clock cycle time than B?
ii. A would be expected to have:
O the same CPI as B?
O a lower CPI than B?
O a higher CPI than B?



VECTORS

(b) Short Questions [4 pts]

i. Suppose we are running a program with extremely long vector lengths. Why might we want to
have fewer vector lanes than the vector register length? Assume that cycle time is not affected by
the number of lanes, and that hardware complexity costs are not a concern.

ii. Why are precise exceptions difficult to support with vector processors?
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Modifying the 5-stage Pipeline: Long Latencies
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A) (2 Point) If we allow non-dependent operations to proceed while a multiply is
outstanding, which parts of execution are proceeding “out-of-order” in the processor? Assume
that multiply operations cannot generate exceptions based on their input or output values. Check
all that apply.

[ ]Issue [X] Completion [ 1 Commit [ ] None of these

B) (3 Points) Suppose we want to add a multiplier with an 8-cycle latency and an 8-cycle
occupancy to a 5-stage pipeline, as shown above. We must keep around some information about
registers whose values are pending an outstanding multiply operation. What type of
microarchitectural structure is commonly used for this purpose?



CACHES

A) (3 Points) How does total capacity, access latency, and bandwidth scale as we move

between layers of a uniprocessor’s memory hierarchy? Indicate the general trend each

with an arrow pointing in the direction of an increase in that parameter.

Memory

Example
Parameter

Capacity

Access
Latency

Bandwidth

Register File

On-chip Caches

Off-Chip Memory

B) (3 Points) Suppose we build a processor with a 1-cycle L1 hit latency, a 10-cycle L1
miss penalty, and a 20-cycle L2 miss penalty. Assuming a L1 hit rate of 90% and a L2
local hit rate of 80%, what is the average memory access time seen by this processor?

C) (4 Points) What is the difference between an inclusive and exclusive multi-level cache?

Give one advantage of each approach.




The remainder of this problem evaluates cache performance for different loop orderings.
Consider the following two loops, written in C, which calculates the sum of all elements of a 16
by 512 matrix of 32-bit integers:

Loop A Loop B
int sum = 0; int sum = 0;
for (i = 0; 1 < 16; i++) for (3 = 0; j < 512; J++)
for (J = 0; 7 < 512; j++) for (1 = 0; 1 < 16; 1i++)
sum += A[i][]J]; sum += A[i][]];

The matrix A is stored contiguously in memory in row-major order. Row-major order means that
elements in the same row of the matrix are adjacent in memory. You may assume A starts at 0x0,
thus A[1] [J] resides in memory location [4* (512*1 + j)].

Assume:
- caches are initially empty.
- only accesses to matrix A cause memory references and all other necessary variables are
stored in registers.
- Instructions are in a separate instruction cache.

D) (7 points) Consider a 4KiB direct-mapped data cache with 64-byte cache lines. Calculate the
number of cache misses that will occur when running Loop A. Calculate the number of cache
misses that will occur when running Loop B. You must show your work for full credit!

E) (7 points) Consider a 4KiB fully-associative data cache with 64-byte cache lines. This data
cache uses a first-in/first-out (FIFO) replacement policy. Calculate the number of cache misses
that will occur when running Loop A, and when running Loop B. You must show your work for
full credit!



VIRTUAL MEMORY

Consider a system which uses a two-level page-based virtual memory system.

e Pages are 16 bytes

e PTEs are 4 bytes

e Memory is byte-addressed

¢ The system is initialized with only the base page table allocated

o Physical pages are allocated from lower to higher PPNs incrementally

e The base page table is architecturally mandated to be at physical address 0x00, so a PTE
containing value 0x00 is effectively an “invalid” PTE (no valid bit is necessary)

o The PTE is entirely reserved for a PPN (no valid, status, or permission bits)

Fill out the contents of physical memory after value 0x6C is written to virtual address 0x94.
Fill out the contents of physical memory after value 0x94 is written to virtual address 0x6C.
You only need to show the values of the memory locations that are written/changed.



Address Value
0x00
0x04
0208
0x0c

0x10
0x14
0x18
Oxlc
0x20

0x24
0x28
0x2c
0x30
0x34
0x38
0x3c
0x40
0x44
0x48
Ox4c

2.B (4 pt) Virtual Address Space

What is the size of the virtual address space of this virtual memory system in bytes?

2.C (4 pt) Physical Address Space

How much physical memory does this virtual memory system support?



2.D (4 pt) VIPT L1

Explain briefly why L1 caches are often designed to be VIPT (virtually indexed, physically
tagged).

2.E (4 pts) PIPT L2

Explain briefly why L2 caches are often designed to be PIPT (physically indexed, physically
tagged).



CACHE COHERENCE

5.A (6 pt) Out-of-order Coherence

Consider an out-of-order processor that implements conservative out-of-order load execution as
discussed in lecture. A load is issued as soon as its address calculation is completed (potentially
out of program order) and the following conditions are met:

e All addresses for older stores in the speculative store buffer are known.
o Ifthe load address matches one of those entries in the speculative store buffer, the store
data from the youngest store older than the load is available for bypassing.

i. (4 pt) This approach behaves correctly in a single-core system. How can this approach
cause a coherence violation in a multi-core system?

(2 pt) Propose a simple solution for the coherence problem discussed above.



5.A (16 pt) Directory-based MOSI Coherence

Consider the baseline directory-based cache-coherence protocol discussed in Handout 6
(distributed with exam), which implements an MSI protocol. We consider extending that
protocol to support MOSI coherence in a system which implements cache-to-cache links.

In the diagram of the adjusted system below, notice that DRAM is distinct from the directory.
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Cache 0 Cache 1
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To support the MOSI protocol in the directory-based system, we make the following
modifications:

e New cache state C-owned for the O state in MOSI
o Ifacache line is in this state, the line is dirty and read-only, and the owning
cache is responsible for providing data to other caches.
o The C-owned state can only be entered from the C-modified state.
o A single cache may have the line in C-owned while multiple other caches have
the same line in C-shared.
e New directory state O(id, dir)
o Cache <id> is the owner of the line, and all caches in dir are sharers.
e New message type FwdShReq(Home, id, id", a)
o This is sent from the directory to cache <id> when the directory is in the W or O
state and has received a ShReq from cache <id'™>.
o When cache <id> receives this message, it moves the line to the C-owned state
and sends ShRep directly to cache <id'>.
o Note that FwdShReq subsumes WbReq/WbRep in the original MSI protocol.
e New message type FwdExReq(Home, id, id", a)
o This is sent from the directory to cache <id> when the directory is in the W or O
state and has received an ExReq from cache <id™>.
o When cache <id> receives this message, it invalidates its copy of the line and
sends ExRep directly to cache <id"™>.
o Note that FwdExReq subsumes FlushReq/FlushRep in the original MSI protocol.
e Caches can send ShRep(id, id’, data(a)) and ExRep(id, id", data(a)).
o These messages go through the cache-to-cache links, bypassing the directory.

(4 pt) Describe a system in which this directory-based MOSI protocol would provide
significant advantages compared to the baseline MSI protocol.



MEMORY CONSISTENCY + SYNCHRONIZATION

(3 Points) Is it possible to translate code that assumes sequential consistency to the RISC-V
weak memory consistency model? Explain.

B) (3 Points) Given the instruction sequences below, check all possible combinations of P1.r2,
P2.r2 after both threads have executed, assuming an ISA that is sequentially consistent. X
and Y are non-overlapping, and initially X =0, Y = 0,

P1: P2:
1i r1, 1 1i rl1, 2
st rl, X st rl, Y
1w r2, Y 1d r2, X
[ ] PL.r2 = 0; P2.r2 =0
[(X] P1l.r2 = 0; P2.x2 =1
[X] P1l.r2 = 2; P2.r2 =0
[X] Pl.r2 = 2; P2.r2 =1

C) (2 Points) Given the same instruction sequences and initial conditions from part B, which of
the following combinations are possible under an ISA with TSO memory consistency model.

[X] P1l.r2 = 0; P2.r2 =0
[(X] Pl.r2 = 0; P2.r2 =1
[X] Pl.r2 = 2; P2.r2 =0
[X] Pl.r2 = 2; P2.r2 =1

D) (4 Points) In general, what is the difference between a weak and a strong memory
consistency model? Give one advantage of each.



(10 points) The following RISC-V assembly encodes a request-response relationship between
two threads. The requestor thread puts work in a memory location request and then sets go =
1. It then spins waiting on the responder to produce the response. The responder thread spins
waiting for work from the master, by checking if go has been set. Once available, it reads the
request data, computes the response, and writes the response data to a memory location

response before setting done = 1.

Requestor thread: Responder thread:
1i a0, 1 spin:
sw data, request lw al, go

sw a0, go

spin:
1lw al, done
begz al, spin
lw a2, response
Sw zero, done

beg al, spin

lw a2, request

SW zZero, go

. a3 = process request
sw a3, response

1i a0, 1

sw a0, done

Under a fully relaxed memory consistency model, insert fences where necessary to ensure this
code functions correctly? Use the least restrictive fences for full credit. Assume each thread

executes its code only once.




