
1

CS152: Section 1

Q1. Architecture vs Microarchitecture
True or false: The following is architecturally visible (exposed by the architecture)?

1. Register file entries in a classical RISC pipeline

2. The stack in a stack architecture

3. Pipeline registers

4. Branch-delay / load-delay slots

5. NOPs

6. Pipeline bubbles

7. Condition codes, status flags

8. Memory address width

9. Instruction/data caches

Q2. Microcoded vs Pipelined
1. How does a microcoded machine differ from a classic RISC pipeline?

2. Why is a simpler microarchitecture generally possible with microcoding?

2

Q3. Microprogramming

Implement a conditional memory-to-memory move instruction in microcode for the single-bus
RISC-V machine described in Handout #1. The instruction has the following format:

CMOVM (rd), (rs1), rs2

CMOVM performs the following operation: If the value in rs2 is true (non-zero), then the
memory word loaded from the address in rs1 is stored to the address in rd.

if R[rs2] != 0

M[rd] := M[rs1]

Fill in the following table with the microinstructions and control signals. Optimize your
microprogram to minimize the number of cycles and to set entries to don’t-cares (*) wherever
possible.

3

State Pseudocode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Imm
Sel

en
Imm

μBr Next State

FETCH0 MA := PC;
A := PC

* PC 0 1 1 * * 0 1 0 0 * 0 N *

IR := Mem 1 * 0 0 0 * * 0 0 0 1 * 0 S *

PC := A + 4 0 PC 1 0 0 * INC_A_4 1 * 0 0 * 0 D *

...

NOP0 μBr to FETCH0 * * 0 0 * * * 0 * 0 0 * 0 J FETCH0

CMOVM0:

