
UC Berkeley – College of Engineering, EECS Department

CS61C: Combinational Logic Blocks

Original document by J. Wawrzynek (2003-11-15)

Revised by Chris Sears and Dan Garcia (2004-04-26)

1 Introduction

Last time we saw how to represent and design combinational logic blocks. In this lecture we will study

a few special logic blocks; data multiplexors, an arithmetic/logic unit, and an adder/subtractor circuit.

These blocks will help later with the implementation of the MIPS processor.

2 Data Multiplexors

A data multiplexor, commonly called a mux, is a circuit that selects its output value from a set of input

values. For instance, consider the mux circuit shown below:

This mux has two n-bit inputs, A and B, and an n-bit output, C. Additionally, it has a special control

signal labeled s, for select. The s signal is used to control which of the two input values is directed to

the output. Specifically, the function of this mux can be described with these two rules:

when s=0, C=A

when s=1, C=B

To remind us of which value of s corresponds to which input, within the mux symbol we commonly

label each input with its corresponding s value.

This particular mux example is a called a 2-to-1, n-bit wide multiplexor. It is 2-to-1 because it takes

two data inputs and outputs one of them. It is n-bit wide because all data signals are n-bits in width.

Notice, however, that the s signal is 1-bit wide. As we will see in a later lecture, this particular type of

mux finds common use within the design of a microprocessor, such as the MIPS. Whenever a circuit

must choose data from multiple sources, a mux is used.

1

2 Wawrzynek, Garcia 2004 c©UCB

Let’s take a look inside the n-bit wide 2-to-1 mux. The simplest way to understand it is to consider

it to be a collection of n instances of 1-bit wide 2-to-1 muxes. Each instance of the 1-bit wide mux is

responsible for generating one bit of C from one bit of A and one bit of B. All n instances share the

same control signal, s.

A 1-bit wide 2-to-1 mux is shown below along with its truth-table.

s ab c

0 00 0

0 01 0

0 10 1

0 11 1

1 00 0

1 01 1

1 10 0

1 11 1

To come up with the logic equation and the associated gate-level circuit diagram we can apply the

technique that we studied last lecture. We write the sum-of-products canonical form and simplify it

through algebraic manipulation. The algebraic steps and the final result are shown below. Intuitively

this result makes sense; when the control input s is a 0, the right hand side of the equation reduces to a,

and when it is a 1, the expression reduces to b.

c = sab + sab + sab + sab
= s(ab + ab) + s(ab + ab)
= s(a(b + b)) + s((a + a)b)
= s(a(1) + s((1)b)
= sa + sb

Often times we find the need to extend the number of data inputs of a multiplexor. For instance

consider a 4-to-1 multiplexor:



CS61C Lecture Notes 3

when S=00, e=a

when S=01, e=b

when S=10, e=c

when S=11, e=d

How would we come up with the circuit for this mux? We could start by enumerating the truth-

table—in this case the function has 4 single bit data inputs and one 2-bit wide control input, for a total

of 6 single bit inputs. The truth-table would have 26, or 64 rows; certainly this is a feasible approach. If

we were to do this, we would end up with the following logic equation:

e = s1s0a + s1s0b + s1s0c + s1s0d

Another way to design the circuit would be to base it on the hierarchical nature of multiplexing. We can

build a 4-to-1 mux from three 2-to-1 muxes as shown below:

The first layer of muxes uses the s0 input to narrow the four inputs down to two; then the second

layer uses s1 to choose the final output.

3 An Arithmetic and Logic Unit (ALU)

Most processor implementations include a special combinational logic block called an arithmetic and

logic unit (ALU). In the MIPS, the ALU is used to compute the result of R-type instructions, such as

ADD, SUB, ADDI, AND, OR, ORI, etc.

We are going to consider the design of a simpler version of the ALU than the one in the MIPS. Ours

will include only for basic functions, ADD, SUB, bitwise AND, and bitwise OR. The ALU is organized

4 Wawrzynek, Garcia 2004 c©UCB

as a CL block with two 32-bit wide data inputs, A and B, a 32-bit wide data output, R, and a 2-bit

wide control input, S. S is used to indicate which of the four possible operations the ALU is to perform.

Typically, the S input will be controlled by the processor based on the opcode (actually the “func” field

of R-type instructions on the MIPS) of the instruction currently executing on the processor.

when S=00, R=A+B

when S=01, R=A-B

when S=10, R=A AND B

when S=11, R=A OR B

A common way to implement an ALU is to provide an instance of a CL block for each of the

possible ALU functions. The inputs, A and B, get distributed to all of the blocks, and the output of

the proper block is selected with a mux. In this configuration, every function of the ALU is computed

internally to the ALU on every cycle, but only one of the results is sent to the output.

For our simple ALU will need an adder block, a subtractor block, an AND block, and an OR block.

Each of these blocks will take two 32-bit inputs and produce a 32-bit output. As you might suspect, a

subtractor circuit is very similar to an adder circuit. Therefore, instead of providing a separate adder

and subtractor, we are going to provide a single circuit that is capable of either operation. We will see in

the next section how to design such a circuit. For now, assume that we have an add/subtract circuit with

a special control input, labeled SUB, which when set to 1 forces the circuit to perform the subtraction

A–B. When SUB=0 the circuit performs addition.

Our add/subtract block has a special output, labeled “overflow”. Upon performing an addition or

subtraction, this output will be a 1 if the result is too large to fit in 32 bits. Overflow can occur when

adding a pair of negative numbers or when adding a pair of positive numbers.

The internal design of our simple ALU is shown below. The high bit of S, s1, is used to choose

between the add/subtract unit and the output of the mux that chooses between the AND and OR blocks.

The choice of AND and OR is controlled by the low bit of S, s0. The low bit of S is also used to specify

the operation of the add/subtract block—1 for sub, and 0 for add. As you can see in the figure, A and B

are distributed to all three blocks.



CS61C Lecture Notes 5

3.1 Implementing the Internal Blocks

The logical operations as defined by the MIPS instruction set are bitwise operations. That means that in

the case of the AND, the resultant bit ri is generated as ai AND bi. The circuit to perform this operation

is simply a collection of 32 AND gates. Each AND gate is responsible for one of the 32 resultant bits.

Similarly, the OR block is a collection of 32 OR gates.

The add/subtract block is a significantly more complex block than the AND or OR block. Its design

is the subject of the next section.

4 Adder/Subtractor Design

We will start out by studying the design of an adder circuit, then later augment it to also perform

subtraction.

One obvious method for arriving at the detailed gate-level circuit for the adder would be to follow

the procedure we learned in the previous lecture. We would start with a truth-table, then write the

canonical Boolean equation, then simplify. Unfortunately, that technique is only effective for very

narrow adders, because the size of the truth-table is too large for wider adders. Therefore, we need to

find a way to break the design up into smaller more manageable pieces. We will design the smaller

pieces individually, then wire them together to create the entire wide adder.

Long-hand addition gives us a good guide on how to break up the adder into pieces. When we add

by hand, we begin by adding together the two least significant bits of A and B, a0 and b0, respectively.

From that addition, we generate a result bit, s0, and possibly a carry bit. Then we move over to the next

6 Wawrzynek, Garcia 2004 c©UCB

more significant column, adding the carry from the previous stage along with the next two bits of A and

B, a1 and b1, respectively. We then continue the process by moving left one column at a time until we

have finished all n columns.

The truth-table representing the value of least significant sum bit, s0, and the carry out of the least

significant stage, c1, is shown below. (We name a carry bit according to the stage to which it is an input.

Therefore the carry into stage 1 is called c1.) By inspection of the true-table we can simply write the

logic equations for this stage.

a3 a2 a1 a0
+ b3 b2 b1 b0

s3 s2 s1 s0

a0 b0 s0 c1

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

s0 = a0 XOR b0

c1 = a0 AND b0

Here are the details for the next significant stage and all subsequent stages. The truth-table now has

8 rows, because there are three inputs into these stages, a bit from each of A and B, along with the carry-

out from the previous stage. Even though the true-table is larger, the logic equations are still simple to

write. By carefully inspecting the truth-table you will notice that the sum output is the exclusive-or of

the three inputs—it is a 1 when the number of 1’s in the input is odd. The carry-out function is the

majority function—it is a 1 when the number of 1’s in its input is greater than the number of 0’s.

a3 a2 a1 a0
+ b3 b2 b1 b0

s3 s2 s1 s0

ai bi ci si ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

si = XOR(ai, bi, ci)
ci+1 = MAJ(ai, bi, ci) = aibi + aici + bici

We will encapsulate the operations of one stage, or column, of the add operation into a small block.

You can think of this block as a 1-bit adder. Its official name is a full-adder cell, but most people

confuse this with an n-bit adder, which it certainly is not. The symbol we will use for this 1-bit adder,

along with the gate-level circuit diagrams for its internals, are shown below:



CS61C Lecture Notes 7

We will not bother creating a special block for the first column of the adder, because anything it can

do the 1-bit adder block can do as well. We just need to figure out where to attach the carry-in to the

first column. More on this later.

The next step in the design of our adder circuit is to wire together a collection of our 1-bit adders

to create an n-bit adder. All we need to do is to wire the carry-out output of one stage into the carry-in

input of the next, from least significant to most, as shown below:

Inputs are applied at the top and after some delay, which is associated with the delay through the

logic gates for the blocks and the delay of the carry from stage to stage. The final result appears at the

bottom.

The carry-out from the most significant stage, cn, can be used as the n
th+1 bit of the result (remem-

ber, adding two n-bit numbers could result in a (n+1)-bit result. However, in most uses for an adder, we

must generate an n bit result. For instance, in the MIPS, because the registers can only store 32 bits, the

result of the add instruction must be a 32-bit number.

As discussed earlier, an overflow output must be generated to indicate when the result cannot fit

into n bits. We can make the following observations about adds in this circuit. Remember, the most

significant stage is the stage associated with the sign bit. If there was a carry into the most significant

stage, but no carry out of that stage, then A and B were both positive and the result of the addition

overflowed, erroneously generating a 1 in the sign bit position. If there was a carry out of the most

significant stage and no carry into that stage, then A and B were both negative and the result of addition

8 Wawrzynek, Garcia 2004 c©UCB

overflowed. In all other cases the value of the carry in to the most significant stage matches the carry out,

then there was no overflow. Based on these observations, we can design a simple circuit that generates

the overflow output signal by comparing the carry-in and carry-out of stage n-1. A simple circuit that

indicates when two signals are different in value is the XOR gate. Therefore:

overflow = cn XOR cn−1

Next we need to decide what to do with the carry in to the least significant stage, c0. Clearly for

the adder to produce the correct result this input must be connected to a source of logic 0 (GND in the

circuit). Now we will find something more interesting to do with c0.

4.1 Subtractor Design

We mentioned earlier that addition and subtraction are closely related, and therefore we would expect

that their respective circuits are similar and could serve dual both purposes. We know that if we want

to compute A−B we can compute A + (−B) instead. −B is the 2’s complement of B. We also know
that the 2’s complement of B is defined as B + 1, where B is the 1’s complement, or the inversion, of

B. Therefore, A−B = A+B +1. This is a nice result as it gives us a very simple way to augment our
adder circuit to be a combined adder and subtractor. We don’t really need a second adder to perform

the +1, because we have the unused input c0. In the case of subtraction, if we connect c0 to 1 instead
of 0, the circuit will add an extra 1 in the least significant column, achieving the extra +1.

The other augmentation needed for subtraction is to invert all the bits of B before feeding them into

the top of the adder. Of course, we want the inversion to be conditional on which operation we wish the

circuit to perform. Once again, we turn to our old friend the XOR gate. If looked at the right way, an

XOR gate is an conditional inverter. If one of the inputs to an XOR gate is a 0, then the output takes on

the value of the other input. On the other hand, if one of the inputs to an XOR gate is a 1, then the other

input passes through inverted. We can conditionally invert B, by passing each of its bits through an

XOR gate on the way to the input of the adder. The augmented adder design is shown below. When the

input SUB is 1 the block performs subtraction, when SUB=0 the block performs addition. Also shown

is the extra XOR gate for generating the overflow signal.



CS61C Lecture Notes 9


