CS162 Fal4 Mid Term 1 Study Guide

The midterm will cover the lectures (up through 9/24), the reading specified by the
lectures, the homeworks, and the connections of the concepts presented there to the
initial aspects of the Project 1. With our “helical” approach to the material, you have
now a broad understanding the aspects of operating systems (Processes, Address
Spaces, File Systems, Sockets, Concurrency, Kernel Structure) and a fairly deep
understanding of the central responsibility of the operating system - executing
threads in processes, providing protection, and offering convenient shared
resources. The exam will seek to affirm this understanding. It will not try to do tons
of tricky, subtle programming details. You can bring a “cheatsheet” consisting of a
double sided 8.5x11 sheet of paper.

Previous midterms (http://inst.eecs.berkeley.edu/~cs162/sp14/handouts.html)
were later in the course and mostly emphasized caching and address space
management with hand simulations of specific algorithms. In each there are a
couple of useful problems. For example

s14 mid#1 - problems 4, 5, and 6

f13 mid #1 - problems 5 and 6

s13 mid 31 - problems 4 & 5 (sort of)
F12 mid#1 - problems 3&4

The questions below are intended to provide a study guide. Reviewing the course
materials to extract answers to them will help integrate what you have learned so
far. Those are the concepts that you will use for the rest of your life. We will have
some questions like these and a few concrete code or diagram type questions.

Problem: What is an operating system?

Problem: Match (by drawing a line) the hardware resource to its more convenient
user abstraction and, for each, describe briefly how the application program
accesses it.

Hardware User Abstraction | Mode of Access
Resource

a. Processor Files

b. Memory Address Space

c. Disk Blocks Registers

d. Network Device [/0

e. Keyboard Signal

f. Display Socket

g. Mouse Window




h. Interrupt Stack

Lock

Heap

Semaphore

Thread

Problem: The operating system provides a protection boundary to protect itself
from errant or malicious applications and applications from one another. For each
of the resources below describe how it is protected.

1. Kernel code:
2. Kernel data:
3. User code:

4. User stack:

5. System files:
6. 1/0 devices:
7
8
9
1

. File Descriptors:

. Process control blocks:
. File handles

0. Locks

Problem: When a process calls exit (), which of the following must the kernel do?
1. Reclaim the memory allocated to the process.

Reclaim the process control block.

Close all the open files

Reclaim the file descriptors for the process before closing the files.

Reclaim the file descriptors for the process after closing the files.

Wait until all the threads in the process terminate.

Kill all the threads in the process.

Save the registers into the kernel stack.

PN AW

Problem: Explain the difference between fork and exec.
Problem: Explain the differences between Process Fork and Thread Fork.

Problem: A web server may fork a process to handle each incoming connection.
Why? Circle all that apply.

1. Toisolate processing the individual connection for the rest of the server.

2. To obtain a socket for the connection that is distinct from the listening

socket.

3. To put the main listening thread to sleep.

4. To process the connection concurrently with listening for additional
connections.
To process the connection concurrently with processing other connections.
6. To overlap I/0 with other processing of the connection request.

o1




Problem: In the http server you built using process fork, the parent listening process
closed the connection socket returned from accept and the child connection process
closed the listening socket. Why?

If, instead, a thread were forked to handle the connection, what sockets would each
thread close?

If handling the connection causes a stack overflow, how would the behavior be
different in the two styles of server design?

Problem: When an interrupt occurs during execution of a user thread, which of the
following are performed by the hardware and which by the operating system?
(Some may not be performed by either.) If done by the OS, indicate whether it is
always or sometimes performed.
1. Transfer control to the interrupt handler specified in the interrupt vector.
Save the user registers onto the user stack
Disable interrupts
Enable interrupts
Execute a return-from-interrupt instruction
Set system mode
Service the interrupt
Open afile
. Terminate the user thread
10. Switch to another thread
11. Resume the user thread

O ON O UAWN

Problem: How is a syscall different from an interrupt?

Problem: When a thread is executing on a processor, which of the following are
true?

PC register holds the address of the executing instruction
Registers hold the current root state of the thread
Registers hold the entire state of the thread

Registers hold the state of the kernel

The stack pointer is valid

A kernel thread is waiting for it

The thread is on the ready queue.

The thread is marked BLOCKED

. The thread is marked RUNNING

10. Interrupts are disabled

11. 1t holds locks.

©ONOUAWN P

Problem: What segments of an executing process are contained in the executable file
for the application and which are created upon loading?



Problem: What is minimally needed to support dual-mode operation?

Problem: How does the operating system prevent one user process from accessing
the code and data of another user process?

Problem: How does the kernel create a separate stack for each kernel thread?
Problem: What is the role of the scheduler?

Problem: Describe the structure and role of each of the following namespaces. For
each, indicate whether it is implemented in the hardware, the operating system, or
the library in the application.
1. ProcessID
Memory Address Space
Virtual Address Space
File names
File streams
File handles
Hostnames
URLs
. Port numbers
10. Thread IDs
11. Socket descriptors

O ONOUTA WN

Problem: What are the advantages of the Unix design philosophy that treats
permanent storage, device [/0, and inter-process communication uniformly?

Problem: What are the benefits of the open-before-use model of file access?

Problem: How does the file abstraction in modern operating systems include
aspects of the process abstraction? How does it include aspects of concept of users?

Problem: What aspects of protection arise in file systems?

Problem: What is the division of responsibilities between the user [/0 library, the
file system, and the 1/0 driver?

Problem: When a user thread issues a read syscall, how does control get transferred
to the read operation in the file system?

Problem: Explain the role of the file position in the high level and low level /O
abstractions.



Problem: The basic read operation is blocking, i.e., it returns when the data to be
read is transferred into the buffer. What does the OS do with the user thread while
the read takes place?

Problem: Using the basic pthread operations, show how a user process could
continue processing while a file read is outstanding. At what point is it valid to
access the data in the read buffer?

Problem: Both files and sockets are accessed by writes and reads on a descriptor
handle. How does “opening” a socket differ from opening a file?

Problem: Can files be used as a means of communication between two processes on
the same machine?

Problem: Within a single sequential process, i.e., a thread, execution follows a
sequential flow of control. However, with multiple threads or processes, they may
proceed at independent rates and some kind of rendezvous is requires to ensure
proper ordering.
e Explain what happens if a client performs a connect before the server it is
trying connect to performs a listen.
e Explain what happens if a server performs a listen before any client connects
to it?
e How far must the server get in its socket creation process before clients can
connect to it without getting an error?

Problem: explain the role of each of Bind, Listen, and Accept in creating a server
socket. How do these differ from Connect?

Problem: When a server listens on a socket, what does the operating system do with
its thread?

Problem: Describe the lifecycle of a process as a state machine. Give one concrete
example of what might cause each state transition.

Problem: What information would need to be in a Process Control Block that is not
in thread control block.

Problem: Show how a Lock can be implemented using a semaphore with operations
sema_init, sema_up, and sema_down.

Problem: How does the address space of a multithreaded process differ from that of
a single threaded process? What is required in the kernel to support multithreaded
processes beyond that required to support single-threaded processes?

Problem: What does the operating system do with a thread that executes a
thread_join?



Problem: What are the similarities and differences between Lock Acquire and
Thread Join?

Problem: What are the similarities and differences between Lock Release and
Thread Exit?

Problem: What thread may execute immediately following a thread_yield? (All that
apply
1. The thread performing the yield.
The parent thread of that performing the yield.
The child of the thread performing the yield.
A thread waiting on this thread.
The thread that has performed a thread join on the yielding thread.
Any thread.
Any thread that is READY when the yield is performed.
A thread waiting on a lock held by the yielding thread.

N E W

Problem: How can thread_yield be used to correctly synchronize cooperating
threads or processes?

Problem: How is an interrupt hander different from a thread?
Problem: What state or information is maintained in the kernel for each thread?

Problem: When a kernel thread that provides the system processing associated with
a single-threaded user process resumes that process, what is the state of the kernel
thread? What resumes the kernel thread?

Problem: What does an interrupt handler need to do in order to save the state of the
thread that it interrupted?

Problem: Why must interrupts be disabled when a kernel thread enters
thread_switch? What re-enables them?

Problem: Describe conditions under which FIFO has lower average response time
than Round-Robin scheduling? Described conditions where Round-Robin has lower
average response time.

Problem: Using semaphores, rather than a flag or locks, implement a 1-1 producer
consumer relationship. Generalize your solution to allow k consumers. (Actual
question would provide specific code fragments for you to work with.)

Problem Schema: Given a diagram of a process address space and kernel data
structures, show the change to the diagram after a user thread folk, a user process
fork, a kernel thread create, or other such operations.



Problem Schema: Show (or fix) how to create a certain specific threadsafe data
structure.

Problem Schema: Show (or fix) how to make some legacy library functions
threadsafe.



