
HW 1: Initial Shell

David Culler

August 31, 2014

Contents

1 Setup 2

2 Using libc in the shell 2

3 A simple shell with Exec 2

4 Path resolution 3

5 Background processing 3

6 Bonus 3

7 Autograder & Submission 3

1

CS 162 Fall 2014 HW 1: Initial Shell

1 Setup

The shell, e.g., bash, csh, or sh, is an application program that is so closely associated with the operating
system that most people think of it as part of the OS. But really the OS provides a clean abstraction for
accessing resources and manages sharing of those resources. The shell provides a command interpreter
and the ability to run programs on the OS. (Your starter shell gives a little sense of this by getting and
printing its process id (PID) along with that of its parent - a real shell.) In building one, you will get a
better sense of the user/system interface than you do from more typical applications.

In your vagrant vm

cd cs162-hw

git pull staff master

cd hw1

You will find starter code shell.c and a simple Makefile. You will notice the use of ”.h” files to provide
a rough C approximation to classes. A parser and a file for io operations have been included as well.

In order to run the shell:

make

./shell

In order to terminate the shell after it starts, either type quit or press ctrl-c.

2 Using libc in the shell

The skeleton shell has a dispatcher to support ’builtins’. This dispatch pattern shows up frequently in
operating systems; for example, it appears in vectoring syscalls to the appropriate kernel handler and in
vectoring interrupts to the interrupt handler. Here we do a look up to transfer control to a command
handler. So far the only two builtins supported are ? which brings up the help menu, and quit which
exits from the shell.

Programs normally access operating capabilities through the Standard C Library, libc. See, for
example, http://www.gnu.org/software/libc/manual/pdf/libc.pdf. To warm up, let’s make this shell a
little more interesting. Currently the prompt is just the command line number. Modify this to include
the current working directory (see man getcwd) in the prompt. Add a command a new built-in ’cd’ that
changes the current working directory. Test your program on all the relevant cases (and fix any bugs
you may find along the way.)

Check in your solution to this part. In your vagrant vm

git add .

git commit -m "Finished adding libc functionality into the shell."

git push personal master

3 A simple shell with Exec

You will notice that anything you type that is not a valid built-in results in a message that it doesn’t
know how to exec programs. Extend your shell of part 1 to fork a child process to execute the command
passing it the command line argument. For example:

culler@dhcp-45-107:~/Classes/cs162/fa14/cs162git/ta/hw1$./shell

./shell running as PID 21799 under 17720

1 /Users/culler/Classes/cs162/fa14/cs162git/ta/hw1: /usr/bin/wc shell.c

2

CS 162 Fall 2014 HW 1: Initial Shell

77 262 1843 shell.c

2 /Users/culler/Classes/cs162/fa14/cs162git/ta/hw1: quit

Bye

Your book provides a rough guideline. Your shell should fork a child process which execs the exe-
cutable file. The parent shell process should wait until the subprocess completes.

Check in your solution to this part. In your vagrant vm

git add .

git commit -m "Finished creating child process to executes files."

git push personal master

4 Path resolution

You probably found that it was rather a pain to test your shell in the previous part because you had to
type the full pathname of every executable. Most operating systems provide an ”environment” in which
to resolve various names to their values. For example

echo $PATH

prints the search path that the shell uses to locate executables. It looks for the file in each directory on
the path, separated by ”:” and executes the first one that it finds. This process is called resolving the
path.

Modify your shell to access the PATH variable from the environment and use it to resolve executable
file names. Do not use execvp. Test your work and commit it.

5 Background processing

Our shell so far runs each command to completion before allowing you to start the next. Many shells
allow you run a command in the background by putting an ”&” at the end of the command line. The
shell responds with the prompt and allows you to start more processes.

Modify your shell so that it runs commands that are terminated by an ”&” in the background. Back-
grounding should be ignored for built-ins. Add a new builtin, wait; it should wait until all backgrounded
jobs have terminated before returning to the prompt.

Test your work and commit the changes.

6 Bonus

At this point you may be feeling, ”hey, what’s so special about bash, I could write my own shell!” We
have left off a lot of functionality. We don’t have pipes. We haven’t redirected stdin and stdout. We
don’t have an interpreter. We don’t have an environment. We don’t have the sense not to issue a prompt
if we are not running from a terminal. Oh well. We’ll put some of these in later. If you feel inspired,
feel free to expand the shell that you have built. Tell us what you decided to add and why.

7 Autograder & Submission

To push to autograder do:

3

CS 162 Fall 2014 HW 1: Initial Shell

git add .

git commit -m "hw1 test"

git checkout -b ag/hw1

git push personal ag/hw1

Within a few minutes you should receive an email from the autograder. (If not, please notify the
instructors via Piazza).

Now in order to finally submit your code, you need to push to the branch release

make clean

git add .

git commit -m "hw1 submission"

git checkout -b release/hw1

git push personal release/hw1

The reason we gave you two types of branches with an autograder, is that the ag/* are testing
branches, nothing on it will be graded whereas you must submit to release in order to get graded. So
please only push to release/* when you intend to submit.

4

	Setup
	Using libc in the shell
	A simple shell with Exec
	Path resolution
	Background processing
	Bonus
	Autograder & Submission

