
CS150 Sp 98 R. Newton & K. Pister 1

8.1.1CS150 Newton/Pister

Outline
m Last time:
Ü Introduction to number systems: sign/magnitude, ones

complement, twos complement
Ü Review of latches, flip flops, counters

m This lecture:
Ü Review State Tables & State Transition Diagrams
Ü Implementation Using D Flip-Flops
Ü Machine Equivalence
Ü Incompletely Specified Machines
Ü State Assignment & State Coding Schemes
Ü Design Example: Assign Codes to States
Ü Design Example: Implement Using D flip-flops
Ü Design Example: Implement Using T flip-flops

8.1.2CS150 Newton/Pister

Clocked Synchronous Finite-State Machines

m Example:

Consider the student association coffee vending
machine which sells coffee at 15¢/cup. The
machine will accept nickles, dimes, and quarters,
one at a time. The coffee release line will be set
to true when 15¢ or more has been put into the
machine and the machine will return the correct
change.

8.1.3CS150 Newton/Pister

Definition: Mealy Machine
Output
Logic

λState
Memory

primary
inputs
(σ(t))

secondary
inputs
(q(t))

primary
outputs

(z(t))

secondary
outputs
(q(t+1))

m A sequential machine or Mealy Machine can be characterized by
the quintuple: M = (Σ, Q, Z, δ, λ) where
Σ = finite non-empty set of input symbols σ1, σ2, ..., σi

Q = finite non-empty set of states q1, q2, ..., qn

Z = finite non-empty set of output symbols z1, z2, ..., zm

δ = next-state function, which maps Q × Σ → Q
λ = the output function, which maps Q × Σ → Z

Next-State
Logic

δ

8.1.4CS150 Newton/Pister

Definition: Moore Machine
Output
Logic

λState
Memory

Next-State
Logic

δ

primary
inputs
(σ(t))

secondary
inputs
(q(t))

primary
outputs

(z(t))

secondary
outputs
(q(t+1))

m A sequential machine is said to be of the Moore type
(Moore Machine) if its output function is a function only
of its states (i.e. λ : Q → Z)

m Every Mealy Machine can be converted to a Moore
Machine and vice versa.

m If the State Memory is clocked, the machines are Clocked,
Synchronous Mealy and Moore machines respectively.

8.1.5CS150 Newton/Pister

Design Example: Inputs, Outputs and States
m Example:

Consider the student association coffee vending machine which
sells coffee at 15¢/cup. The machine will accept nickles, dimes,
and quarters, one at a time. The coffee release line will be set to
true when 15¢ or more has been put into the machine and the
machine will return the correct change.

M1 = (Σ1, Q1, Z1, δ1, λ1)

Sequential
Machine

Present
State

Q1 = { q0¢, q5¢, q10¢ }

Input
Σ1 = { 5¢, 10¢, 25¢ }

Output
 Z1 = { D0¢, R0¢, R5¢,
 R10¢, R15¢, R20¢ }

8.1.6CS150 Newton/Pister

Next-State and Output Functions
m State/Output table (¢ symbol dropped for

clarity):
q\σ 5 10 25

q0 q5,D0 q10,D0 q0,R10

q5 q10,D0 q0,R0 q0,R15

q10 q0,R0 q0,R5 q0,R20

q0

q5 q10

q0 q5

Means that upon the insertion of 5¢, when
the machine is in state q0, it will go to
state q5, the coffee will not be released
and no change (0¢) will be returned.

Present
State

Next State,
Present Output

Present
Input

5/D0

CS150 Sp 98 R. Newton & K. Pister 2

8.1.7CS150 Newton/Pister

How About a Moore Machine?

Output
Logic

λState
Memory

Next-State
Logic

δ

Present
State

Q1 = { q0¢, q5¢, q10¢ , }

Input
Σ1 = { 5¢, 10¢, 25¢ }

Output
 Z1 = { D0¢, R0¢, R5¢,
 R10¢, R15¢, R20¢ }

8.1.8CS150 Newton/Pister

State/Output Transition Table and
Transition Diagram: Moore Machine

q\σ 5 10 25 z
q0 q5 q10 q25 D0
q5 q10 q15 q30 D0
q10 q15 q20 q35 D0
q15 q5 q10 q25 R0
q20 q5 q10 q25 R5
q25 q5 q10 q25 R10
q30 q5 q10 q25 R15
q35 q5 q10 q25 R20

q0/D0

q5/D0
q20/R5

q30/15

q35/20
q25/R10

q15/R0

q10/D0

Present
State Next

State
Present
Output

Present
Input

8.1.9CS150 Newton/Pister

Conversion to Mealy Machine

q\σ 5 10 25
q0 q5,D0 q10,D0 q25,R10
q5 q10,D0 q15,R0 q30,R15
q10 q15,R0 q20,R5 q35,R20

q15 q5,D0 q10,D0 q25,R10
q20 q5,D0 q10,D0 q25,R10
q25 q5,D0 q10,D0 q25,R10
q30 q5,D0 q10,D0 q25,R10

q35 q5,D0 q10,D0 q25,R10

Present
State

Next State,
Present Output

Present
Input

8.1.10CS150 Newton/Pister

Machine Equivalence

m Let qa and qb be two states of machines Ma and Mb respectively.
States qa and qb are said to be equivalent iff, starting with qa and
qb, for any sequence of input symbols applied to the two
machines, the output sequences are identical. If qa and i are not
identical, they are said to be distinguishable.

m Let Ma and Mb be two sequential machines. Ma and Mb are said to
be eqivalent iff for every state of Ma there exists at least one
equivalent state in Mb, and vice versa. Similarly, if Ma and Mb are
not equivalent we say they are distinguishable.

m Two states qa and qb are equivalent if:
(1) qa and qb produce the same output values (for Mealy

machines, they must produce the same outputs for all legal
input conditions).

(2) For each input combination, qa and qb must have the same
next state, or equivalent next states.

8.1.11CS150 Newton/Pister

State Minimization of
Completely-Specified Machines

m Two states are said to be k-equivalent if, when excited
by an input sequence of k symbols, yield identical
output sequences. The machine can be partitioned by
this k-equivalence relation into k-equivalence classes.

m For any n-state machine, there can be at most (n-1)
successive, distinct partitions.

m For any n-state machine, these equivalence classes
contain one and only one unique state.

m To minimize a completely-specified machine:
(1) Find the 1-equivalence classes, 2-equivalence

classes, etc. until the k+1 equivalence classes are
the same as the K equivalence classes, then stop.

(2) Combine all the states in the same class into a
single state. If the machine has m equivalence
classes, the machine has m states.

8.1.12CS150 Newton/Pister

Design Example: State Minimization

q \ σ 5 10 25 1-partition
q0 q5,D0 q10,D0 q25,R10 I

q5 q10,D0 q15,R0 q30,R15 II
q10 q15,R0 q20,R5 q35,R20 III
q15 q5,D0 q10,D0 q25,R10 I
q20 q5,D0 q10,D0 q25,R10 I

q25 q5,D0 q10,D0 q25,R10 I
q30 q5,D0 q10,D0 q25,R10 I
q35 q5,D0 q10,D0 q25,R10 I

CS150 Sp 98 R. Newton & K. Pister 3

8.1.13CS150 Newton/Pister

Design Example: State Minimization

1-partition q \ σ 5 10 25 2-partition
q0 q5,D0 q10,D0 q25,R10
q15 q5,D0 q10,D0 q25,R10

 I q20 q5,D0 q10,D0 q25,R10

q25 q5,D0 q10,D0 q25,R10
q30 q5,D0 q10,D0 q25,R10
q35 q5,D0 q10,D0 q25,R10

 II q5 q10,D0 q15,R0 q30,R15

 III q10 q15,R0 q20,R5 q35,R20

8.1.14CS150 Newton/Pister

State Assignment

q\σ 5 10 25

q0 q5,D0 q10,D0 q0,R10

q5 q10,D0 q0,R0 q0,R15

q10 q0,R0 q0,R5 q0,R20

m We must assign codes to symbolic values. Codes for
input and output symbols are usually "given" so we
must determine codes for the state symbols. This
process is called state assignment or state coding. If
binary storage elements are used we need:

log2(Ns) < Nm < Ns

8.1.15CS150 Newton/Pister

Design Example: State Assignment
Minimum-Length Code

m For this example, 2 < Nm < 3. If we choose Nm = 2,
and assign codes randomly, then we have the
state table:

q\σ 5 10 25

00 01,D0 11,D0 00,R10

01 11,D0 00,R0 00,R15

11 00,R0 00,R5 00,R20

10 ??,?? ??,?? ??,??

unused
state

8.1.16CS150 Newton/Pister

Implementation Using D Flip-Flops
m Can use positive-edge-triggered D flop-flop

directly to implement storage element:

CLK

D Q

CLK

D Q

CLK

D Q

CLK

Present
State

Q1 = { 00,01,11}

Input
Σ1 = { 5, 10, 25 } Output

 Z1 = { D0, R0, R5,
 R10, R15, R20 }

Output
Logic

λ

Next-State
Logic

δ

8.1.17CS150 Newton/Pister

Design Example: State Assignment
One-Hot Code

m For this example, 2 < Nm < 3. If we choose Nm = 3, and assign
codes randomly but where exactly one bit of the code is "1"
for each valid state, then we have the state table:

q\σ 5 10 25
001 010,D0 100,D0 001,R10
010 100,D0 001,R0 001,R15
100 001,R0 001,R5 001,R20

000 ???,?? ???,?? ???,??
011 ???,?? ???,?? ???,??
101 ???,?? ???,?? ???,??
110 ???,?? ???,?? ???,??

111 ???,?? ???,?? ???,??

unused
states

8.1.18CS150 Newton/Pister

Steps to FSM Design
m Construct a state/output table from the word description (or a

state graph).
m State Minimization: Minimize the number of states (usually helps).
m State Assignment: Coose a set of state variables and assign

codes to named states.
m Substitute the state-variable combinations into the state/output

table to create a transition/output table that shows the desired
next-state variable combination for each state/input combination.

m Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
m Construct an excitation table that shows the excitation values

required to obtain the desired next-state value for each
state/input combination.

m Derive excitation equations from excitation table.
m Derive output equations from transition/output table.
m Draw logic diagram that shows combinational next-state and

output functions as well as flip-flops.

CS150 Sp 98 R. Newton & K. Pister 4

8.1.19CS150 Newton/Pister

State Minimization Using an Implication Table

q\σ

a
b
c
d
e
f
g
h

0 1

d c
f h
e d
a e
c a
f b
b h
c g

z

0
0
1
0
1
1
0
1

m Build a compatibility checking table in a ladder shape, as shown,
 and label each row q2, q3, ... qn and column q1, q2, qn-1 (no need for
diagonal).

b

c

d

e

f

g

h

a b c d e f g

8.1.20CS150 Newton/Pister

State Minimization Using am Implication Table:
Summary of Approach

Ô Construct an implication table which contains a square for each pair
of states. Label each row q2, q3, ... qn and column q1, q2, qn-1 (no
need for diagonal).

Ô Compare each each pair of rows in the state table. If the outputs
associated with states i and j are different, put an 7 in square i-j to
indicate that i ≡ j (trivial non-equivalence). If the outputs and the
next states are the same, put a 3 in square i-j to indicate i ≡ j (trivial
equivalence).

Ô In all other squares, put state-pairs that must be equivalent if states
i-j are to be equivalent (if the next states of i and j are m and n for
some input σ1, then m-n is an implied pair and goes in square i-j).

Ô Go through the non- 3 and non- 7 squares, one at a time. If
square i-j contains an implied pair and square m-n contains an 7 ,
then i ≡ j so put an 7 in i-j as well.

Ô If any 7 's were added in the last step, repeat it until no more 7 's
are added. For each square i-j which not containing an 7 , i ≡ j.

8.1.21CS150 Newton/Pister

Implication Table Example: Pass 0

b

c

d

e

f

g

h

a b c d e f g

d-f
c-h

c-e a-f
e-h

c-f
b-ga-gc-e

d-g

b-d
c-h b-f a-b

e-h

c-f
a-b

e-f
b-d

a-d

q\σ

a
b
c
d
e
f
g
h

0 1

d c
f h
e d
a e
c a
f b
b h
c g

z

0
0
1
0
1
1
0
1

8.1.22CS150 Newton/Pister

Implication Table Example: Pass 1 and Pass 2

b

c

d

e

f

g

h

a b c d e f g

d-f
c-h

c-e a-f
e-h

c-f
b-ga-gc-e

d-g

b-d
c-h b-f a-b

e-h

c-f
a-b

e-f
b-d

a-d

b

c

d

e

f

g

h

a b c d e f g

d-f
c-h

c-e a-f
e-h

c-f
b-ga-gc-e

d-g

b-d
c-h b-f a-b

e-h

c-f
a-b

e-f
b-d

a-d

8.1.23CS150 Newton/Pister

Implication Table Example: Final State Table

q\σ

a
b
c
f
g
h

0 1

d c
f h
c a
f b
b h
c g

z

0
0
1
1
0
1

8.1.24CS150 Newton/Pister

Steps to FSM Design
3 Construct a state/output table from the word description (or a

state graph).
3 State Minimization: Minimize the number of states (usually helps

a bit).
m State Assignment: Coose a set of state variables and assign

codes to named states.
m Substitute the state-variable combinations into the state/output

table to create a transition/output table (next-state table) that
shows the desired next-state variable combination for each
state/input combination. Construct next-state K-maps as needed.

m Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
m Construct an excitation table that shows the flip-flop input

excitation values required to obtain the desired next-state value
for each state/input combination.

m Derive flip-flop excitation equations from excitation table.
m Derive output equations from transition/output table.
m Draw logic diagram that shows combinational next-state and

output functions as well as flip-flops.

CS150 Sp 98 R. Newton & K. Pister 5

8.1.25CS150 Newton/Pister

Guidelines for State Assignment
m The idea of the following heuristics is to try to get the 1's together

(in the same implicant) on the flip-flop input maps. This method
does not apply to all problems and even when it is applicable it
does not guarantee a minimum soultion.

Ô States which have the same next state, for a given input, should
be given adjacent assignments ("fan-out oriented").

Ô States which are the next states of the same state should be
given adjacent assignments ("fan-in oriented").

Ô Third priority, to simplify the output function, states which have the
same output for a given input should be given adjacent
assignments (this will help put the 1's together in the output K-
maps; "output oriented").

a

b

c

e

d1/01

1/11

f {a,b}; {d,e}; {c,f}
0/10

0/01

1/11
1/11

0/01

0/10

8.1.26CS150 Newton/Pister

But How Do You Actually Do It?

m Write down all of the states that should be given adjacent
assignments according to the criteria above ("assignment
constraints", or "face embedding constraints.") Then, using a
Karnaugh-map, try to satisfy as many of them as possible (or use
a computer program which does it: Kiss, Nova, Mustang, Jedi).
Some guidelines to help are:

Ô Assign the starting state to the "0" square on the map (picking a
different square doesn't help, since all squares have the same
number of adjacencies and it's easier to reset to "0").

Ô Fanout-oriented guidelines and adjacency conditions required
more than once should be satisfied first.

Ô When guidelines require that 3 or 4 states be adjacent, these
states should be placed within a group of 4 on the assignment
map.

Ô If there are only a few outputs, the output guideline should be
applied last. If there are lots of outputs and only a few states,
then give more weight to the third guideline.

8.1.27CS150 Newton/Pister

State Assignment: Design Example

q \ σ 0 1
q0 q1,0 q2,0
q1 q3,0 q2,0

q2 q1,0 q4,0
q3 q5,0 q2,0

q4 q1,0 q6,0
q5 q5,1 q2,0

q6 q1,0 q6,1

m Consider the state table opposite:
Ô Guideline 1: {q0,q2,q4,q6} since all

have q1 as next-state with input 0.
Similary {q0,q1,q3,q5}; {q3,q5};
{q4,q6}.

Ô Guideline 2: {q1,q2} since next-
states of q0. Similarly {q2,q3};
{q1,q4}; {q2,q5} twice; {q1,q6}
twice.

Ô Guideline 3: would not be worth
using here. We already have a lot
of constraints and their is only one
output, mostly 0.

8.1.28CS150 Newton/Pister

State Assignment: Design Example
m Given the adjacency constraints:

 1: {q0,q2,q4,q6}; {q0,q1,q3,q5};
{q3,q5}; {q4,q6}.

2: {q1,q2}; {q2,q3}; {q1,q4}; {q2,q5}
twice; {q1,q6} twice.

Ô Choose number of flip-flops: 6
states so need at least 3 and no
more than 6. Try with 3 -A, B, C
say.

Ô Task is now to choose
assignment of 3-bit (ABC) state
codes to q1-q6 so that as many
of the above constraints as
possible are satisfied, in the
order stated earlier.

AB
C 00 01 11 10

0

1

0

5731

462

B

A

q0

q3q4

q6 q1

q2 q5

AB
C 00 01 11 10

0

1

0

5731

462

B

A

q0

q4q3

q5 q2

q1 q6

8.1.29CS150 Newton/Pister

State Assignment: Design Example

m Assignments achieved by trial-and-
error (question: would we have been
able to satisfy more constraints using
4 flip-flops instead of 3?).

m Top assignment leads to codes:
q0 = 000, q1 = 110, q2 = 001, q3 = 111,

q4 = 011, q5 = 101, q6 = 010

m Now we can construct the next-state
maps for the assignment.

σA
BC 00 01 11 10

00

01

11

10

0

2 6 14 10

111573

91351

8124
q1

q1

q1

q1 q5 q2

q5 q2

q2

q2

q6

*

q4

*

q3 q6

{q0,q2,q4,q6}

{q3,q5}

{q1,q3,q5}
{q4,q6}

8.1.30CS150 Newton/Pister

Steps to FSM Design
3 Construct a state/output table from the word description (or a

state graph).
3 State Minimization: Minimize the number of states (usually helps

a bit).
3 State Assignment: Coose a set of state variables and assign

codes to named states.
3 Substitute the state-variable combinations into the state/output

table to create a transition/output table (next-state table) that
shows the desired next-state variable combination for each
state/input combination. Construct next-state K-maps as needed.

m Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
m Construct an excitation table that shows the flip-flop input

excitation values required to obtain the desired next-state value
for each state/input combination.

m Derive flip-flop excitation equations from excitation table.
m Derive output equations from transition/output table.
m Draw logic diagram that shows combinational next-state and

output functions as well as flip-flops.

CS150 Sp 98 R. Newton & K. Pister 6

8.1.31CS150 Newton/Pister

Guidelines for Determining Flip-Flop Input
Equations from Next-State Map

Type Input

D
T EN
S-R S

R
J-K J

K

 Qn = 0

Qn+1=0 Qn+1=1

 0 1
 0 1
 0 1
 * 0
 0 1
 * *

 Qn = 1

Qn+1=0 Qn+1 =1

 0 1
 1 0
 0 *
 1 0
 * *
 1 0

Rules for forming input map from next-
state map (2)

Qn =0 half Qn =1 half

no change no change
no change complement
no change replace 1s with *s

replace 0s with *s complement
no change fill in with *s
fill in with *s complement

m Notes:
(1) * = "don't care"
(2) Always copy *s from next-state map to input map first
(3) For S, Qn=1 half and R, Qn=0 half, fill remaining entries with 0s.

8.1.32CS150 Newton/Pister

Flip-Flop Input Equations From Next-State Map:
 Example

AB
Qn 00 01 11 10

0

1

0

5731

462
0 0

00

1 1

1 *

AB
Qn 00 01 11 10

0

1

0

5731

462
0 0

00

1 1

1 *

AB
Qn 00 01 11 10

0

1

0

5731

462
0 0

10

1 1

1 *

AB
Qn 00 01 11 10

0

1

0

5731

462
0 0

00

1 1

* *

AB
Qn 00 01 11 10

0

1

0

5731

462
0 0

*0 1 1

* *

AB
Qn 00 01 11 10

0

1

0

5731

462
0 0

**

1 1

* *

AB
Qn 00 01 11 10

0

1

0

5731

462
* *

*0 1 1

* *

Qn+1 next-state map D input map T input map

S

R

J

K

S-R input map J-K input map

8.1.33CS150 Newton/Pister

A
BC 00 01 11 10

00

01

11

10

0

2 6 14 10

111573

91351

8124

A
BC 00 01 11 10

00

01

11

10

0

2 6 14 10

111573

91351

8124

Next-State Maps: Design Example

m Choose flip-flop types: D flip-flops
m Recall assignments:

q0 = 000, q1 = 110, q2 = 001, q3 = 111, q4 = 011, q5 = 101, q6 = 010
m Construct D input maps from next-state map, substituting state codes.

1

1

1

1 1 0

1 0

0

0

0

*

0

*

1 0

1

1

1

1 0

0

0

0

0

*

0

*

1

1

1

1

σA
BC 00 01 11 10

00

01

11

10

0

2 6 14 10

111573

91351

8124

1

1

110

1 0

0

0

0

*

0

*

1

1

1

An+1 Bn+1 Cn+1

8.1.34CS150 Newton/Pister

Steps to FSM Design
3 Construct a state/output table from the word description (or a

state graph).
3 State Minimization: Minimize the number of states (usually helps

a bit).
3 State Assignment: Coose a set of state variables and assign

codes to named states.
3 Substitute the state-variable combinations into the state/output

table to create a transition/output table (next-state table) that
shows the desired next-state variable combination for each
state/input combination. Construct next-state K-maps as needed.

3 Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
3 Construct an excitation table that shows the flip-flop input

excitation values required to obtain the desired next-state value
for each state/input combination.

m Derive flip-flop excitation equations from excitation table.
m Derive output equations from transition/output table.
m Draw logic diagram that shows combinational next-state and

output functions as well as flip-flops.

8.1.35CS150 Newton/Pister

Next-State Maps: Summary of Example

m Need 6 gates and 13 gate-inputs to
implement the machine using this
assignment.

m Straight binary assignment (q0=000,
q1=001, etc.) would yield 10 gates and 39
gate-inputs.

m The approach gave good results in this
example, but that is not always the case.

8.1.36CS150 Newton/Pister

Derive Output Equations from Output Maps

A
BC 00 01 11 10

00

01

11

10

0

2 6 14 10

111573

91351

8124

0

0

0

0

0

*

0

*

1

0

0

0

0

0

0

1

Output map from Transition/Output Table

CS150 Sp 98 R. Newton & K. Pister 7

8.1.37CS150 Newton/Pister

Steps to FSM Design
3 Construct a state/output table from the word description (or a

state graph).
3 State Minimization: Minimize the number of states (usually helps

a bit).
3 State Assignment: Coose a set of state variables and assign

codes to named states.
3 Substitute the state-variable combinations into the state/output

table to create a transition/output table (next-state table) that
shows the desired next-state variable combination for each
state/input combination. Construct next-state K-maps as needed.

3 Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
3 Construct an excitation table that shows the flip-flop input

excitation values required to obtain the desired next-state value
for each state/input combination.

3 Derive flip-flop excitation equations from excitation table.
3 Derive output equations from transition/output table.
m Draw logic diagram that shows combinational next-state and

output functions as well as flip-flops.

