CS150 HW#5 SOLUTIONS

Please direct any typos (okay…errors) to motoyama@po.eecs.berkeley.edu

4.15

First off it is best to write out the truth table for the function

A
B
C
D
F(A,B,C,D)

0
0
0
0
0

0
0
0
1
0

0
0
1
0
0

0
0
1
1
0

0
1
0
0
0

0
1
0
1
0

0
1
1
0
1

0
1
1
1
1

1
0
0
0
0

1
0
0
1
1

1
0
1
0
1

1
0
1
1
1

1
1
0
0
0

1
1
0
1
1

1
1
1
0
1

1
1
1
1
1

A) 8:1 Mux

B) 4:16 Decoder

C) ROM

It is sufficient just to state the truth table that the ROM will implement…see above

D) PLA

4.16

Minterm #
A
B
C
D

F

0
0
0
0
0

1

1
0
0
0
1

0

2
0
0
1
0

0

3
0
0
1
1

1

4
0
1
0
0

0

5
0
1
0
1

1

6
0
1
1
0

0

7
0
1
1
1

1

8
1
0
0
0

0

9
1
0
0
1

0

10
1
0
1
0

0

11
1
0
1
1

1

12
1
1
0
0

1

13
1
1
0
1

1

14
1
1
1
0

0

15
1
1
1
1

1

A) 16:1 Mux

B) 8:1 Mux

C) 4:1 Mux

Breaking the function up

A
B
C
D

F

0
0
0
0

1

0
0
0
1

0

0
0
1
0

0

0
0
1
1

1

This is the case when A=B=0, which are the control lines. We want to express F as a function of C and D…We see that it is C XNOR D

A
B
C
D

F

0
1
0
0

0

0
1
0
1

1

0
1
1
0

0

0
1
1
1

1

This is the case when A=0 and B=1, which are the control lines. We want to express F as a function of C and D…We see that it is just D in this case.

A
B
C
D

F

1
0
0
0

0

1
0
0
1

0

1
0
1
0

0

1
0
1
1

1

This is the case when A=1 and B=0, which are the control lines. Again we want to express F as a function of C and D…We see that it is just C AND D in this case.

A
B
C
D

F

1
1
0
0

1

1
1
0
1

1

1
1
1
0

0

1
1
1
1

1

This is the case when A=1 and B=1, which are the control lines. Again we want to express F as a function of C and D…but lets re-use the hardware we implemented above. We can express this as (C XNOR D) or D

A) 4:16 decoder

4.20

In order to complete this problem, it is easiest to step back and see what resources you have at your disposal. You are given 8K by 8-bit ROMS, which is equivalent to 213 addressable bytes. You want to be able to address 65,536 locations each 8 bits wide. This is equivalent to 216 addressable locations. We are deficient by a factor of eight.

A) Luckily, we are given a 3:8 decoder for part a. What we can do is use the decoder to select which ROM we want to enable via /CS. We assert a 0 when we want to select a chip. This is done by using the top three bits of the address to feed into the decoder (Address[15:13]). We use these bits to select where we will assert a 0 for /CS. Thus, our effective addressable ROM space is 216 addressable locations. Each of the ROMS will be addressed by the bottom 13 bits of the address (Address[12:0]). Please note that this has not been drawn in the schematic. Neither has the dataout of the ROM.

[image: image1.png]

B)
Again, we have the same situation as above where we have to increase our storage

ability by a factor of eight. This time, however, we must make use of a 2:4 decoder. How can this be done? Again we will use Address[12:0] to address the individual ROMS, and again we will need 8 ROMS. We must somehow use address bits 15 through 13 to enable the /CS and /OE signal on the correct ROM however. First we must invert the outputs of the decoder, since the ROMS utilize negative logic. If we use address bits Address15 and Address14 for the demux, we will simultaneously select two of the eight ROMS at the same time. We can ensure, however, that only one ROM tries to drive the output line by output enabling only one of the two ROMS we selected with chip select. We can use Address13 by feeding the bit directly to the even number ROMS, and the complement to the odd numbered ROMS. Please see schematic below.

[image: image2.png]

 Notice we can save some signals by tying /CS and not /OE together only in part A.

7.27

So, the best thing to do in order to solve this problem is to make sure you understand what they want and to also break up the problem into little pieces. Essentially what they want is an 8-bit (1-byte) wide data bus with 16Kbytes of memory storage locations. You are given a RAM chip with 4096 bits of addressable memory, that outputs one bit. Below is the block diagram view of the problem. This RAM will have log 2 4096 => 12 bits of addressing.

ADDRESS[11:0]

1-bit OUT

First let us deal with the problem of having a 1-bit wide bus. Imagine, if you will, that in order to get an 8-bit wide path, we could put 8 of the 4096-bit RAMs in parallel. That way, for a given address, we would be able to address a byte (8-bits). By placing eight RAMs in parallel, the address bits now address bytes rather than bits. So, we now have the capacity to address 212 bytes, but we want 214. So know we can address our second problem. Let us first assume that we create a symbol for our 4096-byte addressable RAM, which is just 8 of the 4096-bit RAMs in parallel. This is drawn below.

We need to be able to address 4 * the capacity of one of the 4096 * 1 byte RAMS. So, you can imagine using 4 of them in parallel. Now how to be able to address 214 bytes. Our old friend the MUX, can do this. Below is the schematic.

Please note that the mux is eight bits wide. Let’s see why this works. If A13 and A12 are 0 we will select the first 4096 * 1 byte RAM. The RAM itself is addressed with bits A12…A0. The effective addressable range for location 0 on the mux is 00A12…A0. For mux location 1, the effective addressable range is 01 A12…A0, for mux location two the range is effectively 10 A12…A0, and finally for mux location 3, the addressable range is 11 A12…A0. Thus, we can address the full addressable range.

· To Reader: an implementation that controls /CS should also get full credit as long as the implementation works.

7.28
4ms/512 rows =>7.8125 (s

A row refresh should be scheduled every 7.8125 (s

Thus the fraction of memory accesses that must be dedicated for a row refresh is 7.8125(s/80ns => approximately 100

Approximately one in every one hundred DRAM accesses would be a refresh cycle.

· To reader: any number within 5% should get full credit.

7.30

Okay here goes my best attempt to explain this one…Please look at the FSM timing waveforms on 365, 367, and 371 for reference.

READ CYCLE

1) TRC requirement can be ignored since FSM on page 371 increments the address before a read cycle even starts, so we assume address lines are steady state before we start the read cycle

2) TA can also be ignored for same reason as 1.

3) TCO cannot be ignored, so the pulse width for /CS has to be at least 70 ns (includes TCX)

4) TOHA can be ignored since we are only doing one read per cycle and no address change occurs in the middle of a read

5) TCX we need to wait an 20 ns after the data becomes valid to ensure that we allow enough time for output pins of RAM to become active (note included in (3)).

6) TCOT can be ignored because nothing will try to drive the I/O lines since /enab_buf is low the entire time.

Minimum read pulse width = 70 ns (3)

WRITE CYCLE

1) Ignore TAW since we assume that the address lines are incremented before the write cycle begins and are in steady state.

2) TWOT is crucial because we must wait at least 40ns before we can start driving the I/O lines. This is the delay after /WE goes low and the I/O lines from RAM will be tri-stated.

3) TDS is important because this is the time after the data in is fed to the I/O lines (after the I/O was tristated) that the data will be stored. This is an additional 100ns.

4) We will satisfy TWP as you will see shortly as well as TWC (which is the time from address change to address change) as well as TWO

5) TWR and TDH are negligible (each are 0)

Minimum write pule width = 40ns (2) + 100ns(3)=140ns

But the write pulse width is /phi1 * /phi3, in other words, the clock overlap of half of these signals. Thus the minimum pulse width would be 280 ns.

This will satisfy all the conditions in 3) above as well as the requirements imposed by the read cycle.

4096-bit RAM

