
CS150 Spring 98 R. Newton & K. Pister 1

8.2.1CS150 Newton/Pister

Outline
m Last time:
Ü Review State Tables & State Transition Diagrams
Ü Implementation Using D Flip-Flops
Ü Machine Equivalence
Ü Incompletely Specified Machines
Ü State Assignment & State Coding Schemes
Ü Design Example: Assign Codes to States
Ü Design Example: Implement Using D flip-flops
Ü Design Example: Implement Using T flip-flops

m This lecture:
Ü Introduction to VHDL

8.2.2CS150 Newton/Pister

Overall Sequential Design Flow

Logic
Netlist

FPGA
Netlist

Logic Optimization
& Technology Mapping

CLB Assignment
& Routing

Schematic
Entry

Logic
Netlist

FPGA
Netlist

Logic Optimization
& Technology Mapping

CLB Assignment
& Routing

“Behavioral
Compilation”

Behavioral
“Program”

VHDL, Verilog, C?, C++?, Java?

8.2.3CS150 Newton/Pister

Common Representations Used in the Design Process

Behavior
Description of the Function of the Design
Implementation-Independent Description

Behavior
Description of the Function of the Design
Implementation-Independent Description

Discrete Schematic Levels
Register, Gate, Switch-Level Netlists

Discrete Schematic Levels
Register, Gate, Switch-Level Netlists

Electrical Schematic
Transistor-Level Netlist, Voltages,

Currents and Detailed Models

Electrical Schematic
Transistor-Level Netlist, Voltages,

Currents and Detailed Models

Mask-Level Layout
Transistor-Level Description
Logic Values and Strengths

Mask-Level Layout
Transistor-Level Description
Logic Values and Strengths

Specification
Embodiment of the Requirements

 a System is to Satisfy

Specification
Embodiment of the Requirements

 a System is to Satisfy

S
ch

em
at

ic
 L

ev
el

s

8.2.4CS150 Newton/Pister

Structured Custom Chip Layout

8.2.5CS150 Newton/Pister

Standard Cell Layout

8.2.6CS150 Newton/Pister

Layout Abstractions for Cell-Based Design

Mask-Level Layout

Cell Abstraction for
Automatic Placement

CS150 Spring 98 R. Newton & K. Pister 2

8.2.7CS150 Newton/Pister

Standard Cells vs. Gate Array

(a) Two tracks required and
all connections routed.

(b) Shorter wire length but
three tracks required.

In a Standard Cell design, an additional track could be added
while in a Gate-Array, the designer is faced with extra wire length
or no connection.

8.2.8CS150 Newton/Pister

Sequential Control-Flow Model
m Based on Von Neumann "fetch;execute;store" with single (serial

control flow) or synchronized multiple (parallel control flow) thread(s)
of control.

m Proposes an ordering of computation based on strict, temporal
sequencing of operations, in line with above cycle.

m Not well suited to the description of hardware since arbitrary
hardware rarely fits such a model of computation.

m Ability to combine several operations and treat them as a unit, or
block (begin-end, parbegin-parend, ...)

m Ability to allow an operation to be executed in a loop.

m e.g. ISP, DDL/P(1973), Adlib/Sable(1980), AHPL(1973), SLANG(1982).

for(i=0 to 9) {
x[i]=y[i]+c;/* "forall" */

}

j=0;
while(j < 10){

x[j]=y[j]+c;
j=j+1;

}

8.2.9CS150 Newton/Pister

Converting Procedural Descriptions
to a Dataflow-Oriented Representation

m Determine scope of variables and apply single-
assignment in the scope

m Convert Complex data-structures into simple types
m Unroll loops with constant loop-counts (if

appropriate)
m Perform simple syntactic optimizations:
Ô Move operations out of loops where possible
Ô Simplify complex expressions
Ô Extract common sub-expressions

e.g. CMUDA: Value-trace (VT)
HAL: CDFG
YSC: YIF

8.2.10CS150 Newton/Pister

Complications to Dataflow Analysis*
m Unrestricted goto statements (jumps)
Ô Introduce overly-pessimistic dependencies during

static analysis

Ô Values of variables references in the statements
following a label depend on the assignments to
variables in the code sections that can jump to the
label.

m Global variables
Ô i.e. variables declared outside of any function and

therefore able to be shared by all functions

Ô Last-use cannot be determined without examining
the entire program.

*J. T. Deutsch, “Behavioral-Level Simulation and Synthesis
of Digital Systems,” UCB/ERL M83/47, August 1983

8.2.11CS150 Newton/Pister

Complications to Dataflow Analysis

m Static Variables
Ô i.e. variables local to a function that retain their values

between calls to the function

Ô Create dependencies between the order of the calls to a
function and, in effect, represent a communication path
between all functions which call the function.

m Aliasing (often due to call-by-reference or call-
by-name)
Ô i.e. one or more name used to represent the same variable,

which can result in hidden dependencies.

Ô Several functions can be called with the name (or address) of
the same object at the same time and multiple functions may
try to modify the object concurrently. Unfortunately, this
condition depends on run-time behavior.

8.2.12CS150 Newton/Pister

Complications to Dataflow Analysis

m The Single-Assignment Rule
Ô Variables used as "scratchpad" temporaries (assigned a

value then re-assigned another value within the same
section of program) create false dependencies between the
old value and the new value of the variable.

Ô Apply rule that a variable may only be written to once within
a scope.

A := A+1 Ô next A := A+1

m Applicative or Functional Languages
Ô No goto's, global or static variables, call-by-reference or

aliasing

Ô Enforces the single-assignment rule

e.g. Silage, Ella

CS150 Spring 98 R. Newton & K. Pister 3

8.2.13CS150 Newton/Pister

Languages versus Models:
A Software Analogy

f77

"C"

Lisp

Pascal

Von Neumann Computer

Intermediate
Form

⊕

D D

D

D D

D

⊕ ⊕
⊕

⊕ ⊕
⊕

⊕
⊕ ⊕

⊕
⊕

⊕

⊕ ⊕

⊕
⊕ ⊕

⊕
⊕ ⊕

⊕⊕

⊕
⊕ ⊕

⊗

⊗ ⊗ ⊗ ⊗

⊗

⊗ ⊗

D

Ella VHDL

Silage

Hardware Implementation

Hardware Intermediate
Form

8.2.14CS150 Newton/Pister

Behavior and Structure:
Two Faces of the Same Coin

a
b

d
c

f f = (a.b).(c+d).c'

Common
Underlying

Notation

Common
Underlying

Notation

8.2.15CS150 Newton/Pister

Behavior and Structure

"Behavioral"

"Structural"

Information Carried In:

Semantics

Syntax

8.2.16CS150 Newton/Pister

State and Statements

m Consider symbolic state vector:

(serial
(statement A)
(statement B)
(parallel

(statement C)
(serial

(statement D)
(statement E)

)))

State Statements
Number Executed
1 A
2 B
3 C
3.1 D
3.2 E

m Every time (serial (parallel (serial occurs,
pLevel++; stateVector[pLevel] becomes current.

8.2.17CS150 Newton/PisterEE244, Fall 96 6.47

Data and Control

m Control is a necessary by-product of the synthesis process of
mapping a behavior into the "real world" (i.e. to hardware and to
"slow time")
Þ While it is a useful abstraction for certain classes of design, It should not

be treated in a special way in the fundamental notation used for
describing behavior/structure.

Þ Consider the "Microscope Test": Control and data signals appear the
same. The notion of control is a design-style oriented concept (and is
therefore important) but control is not fundamentally different from other
artifacts of the description (e.g. "datapath").

m Disclaimer: This is the view of this presenter but this view is not
held today by the majority of synthesis researchers (e.g. VT, DDL,
VHDL).

8.2.18CS150 Newton/Pister

VHDL: The “nroff/latex” of Design

VHDL-Based
Synthesis

System

CS150 Spring 98 R. Newton & K. Pister 4

8.2.19CS150 Newton/PisterEE244, Fall 96 6.52

8.2.20CS150 Newton/Pister

3-Bit Parity Function:
 "Control-Oriented"if A = '1' then

 if B = '1' then
 if C = '1' then parity <= '1';
 else parity <= '0';
 endif;
 else
 if C = '1' then parity <= '0';
 else parity <= '1';
 endif;
 end if;
else
 if B = '1' then
 if C = '1' then parity <= '0';
 else parity <= '1';
 endif;
 else
 if C = '1' then parity <= '1';
 else parity <= '0';
 endif;
 end if;
end if;

0

0

0
0
1

1

1
1
0
1A

C
B

p arity

8.2.21CS150 Newton/PisterEE244, Fall 96 6.50

3-Bit Parity Function:
 "Dataflow-Oriented"

parity <= ((A xor B) xor C);

A

C

B
p arity

8.2.22CS150 Newton/PisterEE244, Fall 96 6.51

3-bit Parity Function:Possible VHDL Implementation

ENTITY parityFunction IS
PORT(A, B, C : IN t_wlogic; parity : OUT t_wlogic)

END parityFunction;
ARCHITECTURE full OF parityFunction IS
BEGIN

PROCESS (A, B, C)
VARIABLE count : integer;
BEGIN

count := 0;
IF A = '1' THEN count := count +1; END IF;
IF B = '1' THEN count := count +1; END IF;
IF C = '1' THEN count := count +1; END IF;
IF (count MOD 2) = 0 THEN

OUT <= '0';
ELSE

OUT <= '1';
END IF;

END PROCESS;
END full;

(Adapted from D. R. Coelho, "The VHDL Handbook," Kluwer, 1989)

8.2.23CS150 Newton/Pister

"I synthesize from C" or
"I synthesize from VHDL"

m No you don't!
(with one known exception [AT&T Cones])

OR
m If you do, you're probably being very silly!

Remember:
Ô A subset of a language is a different language
Ô A sequential language has sequential
semantics
a = b+c;
d = e+f;

a = 1;
xp = &a;
yp = xp+1-3+2;
*xp = *xp+1;
*yp = *yp+1;
print(*yp);

8.2.24CS150 Newton/Pister

Representing Time
 for Behavioral Description

m Must distinguish sequence (causality) vs.
passage of time

m Continuous time variable:
A after B
A, B independent

m "Quantized" time variable:
A after B
A, B independent
A, B at the same time
where the meaning of "at the same time" is across
an interval (must be valid at the end of the
interval).

CS150 Spring 98 R. Newton & K. Pister 5

8.2.25CS150 Newton/Pister

Why Should Time be Discrete?

S1

S2

S3

S1

S2

S3

S1

S2
S3

S1
S2

S3

8.2.26CS150 Newton/PisterEE244, Fall 96 6.57

Representing Time
for Behavioral Descriptions

m Such an interval is called a "timeslot "; analogous to
 a "control state" in control-flow-based synthesis.

m Timeslot may have many models associated with it:
 unspecified, fixed, interval (EDIF miNoMax),
 distribution.

m System temporal behavior is relative; external
 inputs map behavior to "slow time."

8.2.27CS150 Newton/PisterEE244, Fall 96 6.58

Encoding Information
 in Time & Space

m In Most HDLs, "wires" are declared but
the passage of time is embedded in the
control structures.

m We are caught up (once again!) with
imperative, sequential thinking and a
Von Neumann model.

m We need a way of capturing both
temporal and spatial encoding in a
single, unified mathematical model.

m Use a type mechanism: "τ-types"

8.2.28CS150 Newton/Pister

Design Representation

• Some variation of entity-relationship model most
common today.

• Data model usually based on existing interchange
format or design language (e.g. EDIF, VHDL).

• Open Issue: Forced Consistency (conventional
database approach) versus Periodic Check (C "Lint"
approach).

• Integration Environment provides lingua franca for
design representation. Useful side-effect of standards
meetings is a common understanding of terms and data
objects.

8.2.29CS150 Newton/Pister

instance: a1

master: dataPath

master: ALU

symbolic
reference

8.2.30CS150 Newton/Pister

 instance: a1

master: dataPath

master: ALU

formal terminal: "VDD!"

formal pin

actual pin

actual terminal: "VDD!"

formal terminal of datapath

(EDIF: port)

(EDIF: portImplementation)

(EDIF:portInstanc
e)

(EDIF:instance)

(EDIF: (cell(view(contents)))
(OCT: cell:view:contents)

CS150 Spring 98 R. Newton & K. Pister 6

8.2.31CS150 Newton/Pister

What's in a Name?

• Just about Everything!
• Efficient name resolution - resolving references to

design objects - is one of the most important,
"undecided" research problems.

• Strongly related to multiprocessor distributed cache
consistency problem, distributed file system problem,
general distributed data management problem.

• Ultimate issue is efficient pruning of "global search."
(replication of read-only data, use of "hints,"
management of domains and dynamic data migration
are all important.)

8.2.32CS150 Newton/Pister

~newton

chips

~cad/lib/technology

nmos1 scmos

fast
slow

posBrain

dataPath
neuron

leg

dataPath

ALU

ALU

8.2.33CS150 Newton/Pister

 ~newton

chips

nmos1 scmos

fast slow

posBrain

dataPath

neuron

leg

dataPath

ALU

ALU

symbolic

physical

symbolic

symbolic

current
current

current release2

contents

contents

contents contents

8.2.34CS150 Newton/Pister

chip
d1

d2
da

ta
P

at
h

a1

dataPath

REG

ALU
A

LU

na
nd

nand

nand na
nd

n1

n1 n1

r1

a1

Cout
attribute of port

instance "output"

R
E

G

n1

r1

8.2.35CS150 Newton/Pister

chip

dataPath dataPath

ALU ALUREG REG

nand nand nand nand

a1 r1 a1 r1

n1 n1 n1 n1

d1 d2

Cout

instance of
cell datapath

symbolic
reference

attribute of port
instance "output"

8.2.36CS150 Newton/Pister

 chip
d1 d2

dataPath
a1 r1

ALU REG

n1 n1

nand
Coutmaster

instance

symbolic
 reference

attribute of formal
 port "output"

top level
of hierarchy

