

Example 1: Sequential Design

"(1) A sequential network has one input and one output. The output becomes 1 and remains 1 thereafter when at least two zeros and at least two ones have occurred as inputs, regardless of the order of occurrence. Draw a state graph (Moore type) for the network (9 states are sufficient). Your final state graph should be neatly drawn with no crossed lines."

8.2.3

CS150 Newton/Pister

Example 2: State Assignment & J/K Implementation

"(2) The following state table is to be implemented using J-K flip-flops and logic gates (format of next-state entries is (next-state,output))."

	Prese	nt		
	input	input		
	State	x=0	x=1	
	а	a,0	e,0	
	b	c,0	b,1	
	С	a,0	f,0	
	d	c,0	b,1	
	е	f,0	e,0	
	f	a,0	f,0	
S150 Newton/Pister				8.2.

		Qn = 0		Qn = 1		Rules for forming input map from next-state map (2)		
Туре	Input	Qn+1=0	Qn+1=1	Qn+1=0	Qn+1 ='		Qn =1 half	
D	D	0	1	0	1	no change	no change	
Т	EN	0	1	1	0	no change	complement	
S-R	s	0	1	0	*	no change	replace 1s with *s	
	R	*	0	1	0	replace 0s with *s	complement	
J-K	J	0	1	*	*	no change	fill in with *s	
	к	*	*	1	0	fill in with *s	complement	
(1 (2	2) Alw	'don't o ays co	oy *s fr			map to input ma alf, fill remaining		

S150 Newton/Pister

Example 3: Arithmetic	
"(c) Using exactly 5 bits, express the following numb in 2's-complement form:	oers
(a) 12 = (b) -13 = (c) 31 =	
S150 Newton/Pister	8.2.13