Outline

O Last time:
\rightarrow Introduction to number systems: sign/magnitude, ones complement, twos complement
\rightarrow Review of latches, flip flops, counters
\bigcirc This lecture:
\rightarrow Review State Tables \& State Transition Diagrams
\rightarrow Implementation Using D Flip-Flops
\rightarrow Machine Equivalence
\rightarrow Incompletely Specified Machines
\rightarrow State Assignment \& State Coding Schemes
\rightarrow Design Example: Assign Codes to States
\rightarrow Design Example: Implement Using D flip-flops
\rightarrow Design Example: Implement Using T flip-flops

Clocked Synchronous Finite-State Machines

O Example:
Consider the student association coffee vending machine which sells coffee at $15 ¢ /$ cup. The machine will accept nickles, dimes, and quarters, one at a time. The coffee release line will be set to true when 15¢ or more has been put into the machine and the machine will return the correct change.

Design Example: Inputs, Outputs and States		
O Example:		
Consider the student association coffee vending machine which sells coffee at $15 ¢$ /cup. The machine will accept nickles, dimes, and quarters, one at a time. The coffee release line will be set to true when $15 ¢$ or more has been put into the machine and the machine will return the correct change.		
$\mathbf{M}_{1}=\left(\Sigma 1, \mathbf{Q}_{1}, \mathbf{Z}_{1}, \delta 1, \lambda_{1}\right)$		
Input $\Sigma 1=\{5 ¢, 10 ¢, 25 ¢\}$	Sequential Machine	Output $Z_{1}=\{\mathrm{DOc}, \mathrm{ROc}, \mathrm{R} 5 \mathrm{c}$, R10c, R15c, R20c \}
$\Sigma 1=\{5 ¢, 10 ¢, 25 ¢\}$	Present State $\mathbf{Q 1}_{1}=\{\mathrm{q} 0 \mathrm{c}, \mathrm{q} 5 \mathrm{c}, \mathrm{q} 10 \mathrm{c}\}$	
CS150 Newton/Pister		8.1.5

Next-State and Output Functions

O State/Output table (c symbol dropped for clarity):

Means that upon the insertion of 5 c , when the machine is in state q 0 , it will go to state $q 5$, the coffee will not be released and no change ($0 ¢$) will be returned.

How About a Moore Machine?

Input
$\Sigma 1=\{5 \mathrm{c}, 10 \mathrm{c}, 25 \mathrm{c}\}$

Present State
$\mathbf{Q}_{1}=\{\mathbf{q} 0 \mathrm{c}, \mathbf{q} 5 \mathrm{c}, \mathbf{q} 10 \mathrm{c}$,

Conversion to Mealy Machine

Machine Equivalence

O Let $q a$ and $q b$ be two states of machines $M a$ and $M b$ respectively. States qa and qb are said to be equivalent iff, starting with qa and $q b$, for any sequence of input symbols applied to the two machines, the output sequences are identical. If qa and i are not identical, they are said to be distinguishable.

O Let Ma and Mb be two sequential machines. Ma and Mb are said to be eqivalent iff for every state of Ma there exists at least one equivalent state in Mb, and vice versa. Similarly, if Ma and Mb are not equivalent we say they are distinguishable.

O Two states $q a$ and $q b$ are equivalent if:
(1) $q a$ and $q b$ produce the same output values (for Mealy machines, they must produce the same outputs for all legal input conditions).
(2) For each input combination, qa and qb must have the same next state, or equivalent next states.

State Minimization of Completely-Specified Machines

O Two states are said to be k-equivalent if, when excited by an input sequence of \boldsymbol{k} symbols, yield identical output sequences. The machine can be partitioned by this k-equivalence relation into k-equivalence classes.
O For any n-state machine, there can be at most ($n-1$) successive, distinct partitions.
O For any n-state machine, these equivalence classes contain one and only one unique state.

O To minimize a completely-specified machine:
(1) Find the 1-equivalence classes, 2-equivalence classes, etc. until the $k+1$ equivalence classes are the same as the K equivalence classes, then stop.
(2) Combine all the states in the same class into a single state. If the machine has m equivalence classes, the machine has m states.

Design Example: State Minimization

$q \backslash \sigma$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 5}$	1-partition
q0	q5,D0	q10,D0	q25,R10	I
q5	q10,D0	q15,R0	q30,R15	II
q10	q15,R0	q20,R5	q35,R20	III
q15	q5,D0	q10,D0	q25,R10	I
q20	q5,D0	q10,D0	q25,R10	I
q25	q5,D0	q10,D0	q25,R10	I
q30	q5,D0	q10,D0	q25,R10	I
q35	q5,D0	q10,D0	q25,R10	I

Design Example: State Minimization

1-partition	q $\backslash \sigma$	$\mathbf{5}$	$\mathbf{1 0}$	25	2-partition
	q0	q5,D0	q10,D0	q25,R10	
	q15	q5,D0	q10,D0	q25,R10	
	q20	q5,D0	q10,D0	q25,R10	
	q25	q5,D0	q10,D0	q25,R10	
	q30	q5,D0	q10,D0	q25,R10	
	q35	q5,D0	q10,D0	q25,R10	
III	q5	q10,D0	q15,R0	q30,R15	
	q10	q15,R0	q20,R5	q35,R20	

State Assignment

$q \backslash \sigma$	5	10	25
$q 0$	$q 5, D 0$	$q 10, D 0$	$q 0, R 10$
$q 5$	$q 10, D 0$	$q 0, R 0$	$q 0, R 15$
$q 10$	$q 0, R 0$	$q 0, R 5$	$q 0, R 20$

O We must assign codes to symbolic values. Codes for input and output symbols are usually "given" so we must determine codes for the state symbols. This process is called state assignment or state coding. If binary storage elements are used we need:

$$
\left\lceil\log 2\left(\mathbf{N}_{\mathrm{s}}\right)\right\rceil<\mathbf{N}_{\mathrm{m}}<\mathbf{N}_{\mathrm{s}}
$$

Implementation Using D Flip-Flops

Can use positive-edge-triggered D flop-flop directly to implement storage element:

Design Example: State Assignment One-Hot Code

For this example, $2<\mathbf{N}_{\mathrm{m}}<3$. If we choose $\mathrm{N}_{\mathrm{m}}=3$, and assign codes randomly but where exactly one bit of the code is "1" for each valid state, then we have the state table:

q $\backslash \sigma$	5	10	25
001	010,D0	100,D0	001,R10
010	100,D0	001,R0	001,R15
100	001,R0	001,R5	001,R20
000	???,??	???,??	???,??
011	???,??	???,??	???,?? ${ }^{4}$
101	???,??	???,??	???,??
110	???,??	???,??	???,??
111	???,??	???,??	???,??

Steps to FSM Design

Construct a state/output table from the word description (or a state graph).
State Minimization: Minimize the number of states (usually helps).
State Assignment: Coose a set of state variables and assign codes to named states.
O Substitute the state-variable combinations into the state/output table to create a transition/output table that shows the desired next-state variable combination for each state/input combination.
Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
O Construct an excitation table that shows the excitation values required to obtain the desired next-state value for each state/input combination.
O Derive excitation equations from excitation table.
O Derive output equations from transition/output table.
O Draw logic diagram that shows combinational next-state and output functions as well as flip-flops.

State Minimization Using an Implication Table

O Build a compatibility checking table in a ladder shape, as shown, and label each row q2, q3, ... qn and column q1, q2, qn-1 (no need for diagonal).

$\mathbf{q} \backslash \sigma$	$\mathbf{0}$	$\mathbf{1}$	\mathbf{z}
\mathbf{a}	\mathbf{d}	\mathbf{c}	$\mathbf{0}$
\mathbf{b}	\mathbf{f}	\mathbf{h}	$\mathbf{0}$
\mathbf{c}	\mathbf{e}	\mathbf{d}	$\mathbf{1}$
\mathbf{d}	\mathbf{a}	\mathbf{e}	$\mathbf{0}$
\mathbf{e}	\mathbf{c}	\mathbf{a}	$\mathbf{1}$
\mathbf{f}	\mathbf{f}	\mathbf{b}	$\mathbf{1}$
\mathbf{g}	\mathbf{b}	\mathbf{h}	$\mathbf{0}$
\mathbf{h}	\mathbf{c}	\mathbf{g}	$\mathbf{1}$

Implication Table Example: Pass 0

q\o	01	z
a	d c	0
b	f h	0
c	e d	1
d	a e	0
e	c a	1
f	f b	1
g	b h	0
h	c g	1

CS150 Newton/Pister

Implication Table Example: Pass 1 and Pass 2

Implication Table Example: Final State Table

$\mathbf{q} \backslash \sigma$	$\mathbf{0}$	$\mathbf{1}$	\mathbf{z}
\mathbf{a}	\mathbf{d}	\mathbf{c}	$\mathbf{0}$
\mathbf{b}	\mathbf{f}	\mathbf{h}	$\mathbf{0}$
\mathbf{c}	\mathbf{c}	\mathbf{a}	$\mathbf{1}$
\mathbf{f}	\mathbf{f}	\mathbf{b}	$\mathbf{1}$
\mathbf{g}	\mathbf{b}	\mathbf{h}	$\mathbf{0}$
\mathbf{h}	\mathbf{c}	\mathbf{g}	$\mathbf{1}$

Steps to FSM Design

\checkmark Construct a state/output table from the word description (or a state graph).
\checkmark State Minimization: Minimize the number of states (usually helps a bit).
O State Assignment: Coose a set of state variables and assign codes to named states.
O Substitute the state-variable combinations into the state/output table to create a transition/output table (next-state table) that shows the desired next-state variable combination for each state/input combination. Construct next-state K-maps as needed.
O Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
O Construct an excitation table that shows the flip-flop input excitation values required to obtain the desired next-state value for each state/input combination.
O Derive flip-flop excitation equations from excitation table.
O Derive output equations from transition/output table.
O Draw logic diagram that shows combinational next-state and output functions as well as flip-flops.

Guidelines for State Assignment

O The idea of the following heuristics is to try to get the 1 's together (in the same implicant) on the flip-flop input maps. This method does not apply to all problems and even when it is applicable it does not guarantee a minimum soultion.
\rightarrow States which have the same next state, for a given input, should be given adjacent assignments ("fan-out oriented").
\rightarrow States which are the next states of the same state should be given adjacent assignments ("fan-in oriented").
\rightarrow Third priority, to simplify the output function, states which have the same output for a given input should be given adjacent assignments (this will help put the 1's together in the output Kmaps; "output oriented").

But How Do You Actually Do It?

O Write down all of the states that should be given adjacent assignments according to the criteria above ("assignment constraints", or "face embedding constraints.") Then, using a Karnaugh-map, try to satisfy as many of them as possible (or use a computer program which does it: Kiss, Nova, Mustang, Jedi). Some guidelines to help are:
\rightarrow Assign the starting state to the " 0 " square on the map (picking a different square doesn't help, since all squares have the same number of adjacencies and it's easier to reset to " 0 ").
\rightarrow Fanout-oriented guidelines and adjacency conditions required more than once should be satisfied first.
\rightarrow When guidelines require that 3 or 4 states be adjacent, these states should be placed within a group of 4 on the assignment map.
\rightarrow If there are only a few outputs, the output guideline should be applied last. If there are lots of outputs and only a few states, then give more weight to the third guideline.

State Assignment: Design Example

O Consider the state table opposite:

$q \backslash \sigma$	0	1
$q 0$	$q 1,0$	$q 2,0$
$q 1$	$q 3,0$	$q 2,0$
$q 2$	$q 1,0$	$q 4,0$
$q 3$	$q 5,0$	$q 2,0$
$q 4$	$q 1,0$	$q 6,0$
$q 5$	$q 5,1$	$q 2,0$
$q 6$	$q 1,0$	$q 6,1$

\rightarrow Guideline 1: $\{\mathrm{q} 0, \mathrm{q} 2, \mathrm{q} 4, \mathrm{q} 6\}$ since all have q1 as next-state with input 0 . Similary $\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 3, \mathrm{q} 5\} ; \quad\{\mathrm{q} 3, \mathrm{q} 5\} ;$ $\{q 4, q 6\}$.
\rightarrow Guideline 2: $\left\{q_{1}, \mathrm{q} 2\right\}$ since nextstates of q0. Similarly $\{q 2, \mathrm{q} 3\}$; $\{q 1, q 4\} ;\{q 2, q 5\}$ twice; $\{\mathrm{q} 1, \mathrm{q} 6\}$ twice.
\rightarrow Guideline 3: would not be worth using here. We already have a lot of constraints and their is only one output, mostly 0 .

State Assignment: Design Example

O Given the adjacency constraints:
1: $\{q 0, q 2, q 4, q 6\} ;\{q 0, q 1, q 3, q 5\} ;$ \{q3,q5\}; \{q4,q6\}.

2: \{q1,q2\}; \{q2,q3\}; \{q1,q4\}; \{q2,q5\} twice; $\left\{q^{1}, \mathrm{q} 6\right\}$ twice.
\rightarrow Choose number of flip-flops: 6 states so need at least 3 and no more than 6 . Try with $3-A, B, C$ say.
\rightarrow Task is now to choose assignment of 3 -bit (ABC) state codes to q 1 - q 6 so that as many of the above constraints as possible are satisfied, in the order stated earlier.

State Assignment: Design Example

O Assignments achieved by trial-anderror (question: would we have been able to satisfy more constraints using 4 flip-flops instead of 3 ?).

O Top assignment leads to codes:
$q 0=000, q 1=110, q 2=001, q 3=111$, $q 4=011, q 5=101, q 6=010$

O Now we can construct the next-state maps for the assignment.

Steps to FSM Design

\checkmark Construct a state/output table from the word description (or a state graph).
\checkmark State Minimization: Minimize the number of states (usually helps a bit).
\checkmark State Assignment: Coose a set of state variables and assign codes to named states.
\checkmark Substitute the state-variable combinations into the state/output table to create a transition/output table (next-state table) that shows the desired next-state variable combination for each state/input combination. Construct next-state K-maps as needed.
O Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
O Construct an excitation table that shows the flip-flop input excitation values required to obtain the desired next-state value for each state/input combination.
O Derive flip-flop excitation equations from excitation table.
O Derive output equations from transition/output table.
O Draw logic diagram that shows combinational next-state and output functions as well as flip-flops.

Guidelines for Determining Flip-Flop Input Equations from Next-State Map

		Qn $=0$		Qn = 1		Rules for forming input map from nextstate map (2)	
Type	Input	$Q_{n+1}=0$	Qn+1=1	Qn+1=0	Qn+1 $=1$	Qn $=0$ half	Qn =1 half
D		0	1	0	1	no change	no change
T	EN	0	1	1	0	no change	complement
S-R	S	0	1	0	*	no change	replace 1s with *s
	R	*	0	1	0	replace 0s with *s	complement
J-K	J	0	1	*	*	no change	fill in with *s
	K	*	*	1	0	fill in with *s	complement

O Notes:
(1) * = "don't care"
(2) Always copy *s from next-state map to input map first
(3) For $\mathrm{S}, \mathrm{Qn}=1$ half and $\mathrm{R}, \mathrm{Qn}=0$ half, fill remaining entries with 0 s .

Flip-Flop Input Equations From Next-State Map:

 Example

Next-State Maps: Design Example

O Choose flip-flop types: D flip-flops

O Recall assignments:
$q 0=000, q 1=110, q 2=001, q 3=111, q 4=011, q 5=101, q 6=010$
O Construct D input maps from next-state map, substituting state codes.

$A n+1$

$B n+1$

Steps to FSM Design

\checkmark Construct a state/output table from the word description (or a state graph).
\checkmark State Minimization: Minimize the number of states (usually helps a bit).
\checkmark State Assignment: Coose a set of state variables and assign codes to named states.
\checkmark Substitute the state-variable combinations into the state/output table to create a transition/output table (next-state table) that shows the desired next-state variable combination for each state/input combination. Construct next-state K-maps as needed.
\checkmark Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
\checkmark Construct an excitation table that shows the flip-flop input excitation values required to obtain the desired next-state value for each state/input combination.
O Derive flip-flop excitation equations from excitation table.
O Derive output equations from transition/output table.
O Draw logic diagram that shows combinational next-state and output functions as well as flip-flops.

Next-State Maps: Summary of Example

O Need 6 gates and 13 gate-inputs to implement the machine using this assignment.

O Straight binary assignment ($q 0=000$, q1=001, etc.) would yield 10 gates and 39 gate-inputs.

The approach gave good results in this example, but that is not always the case.

Derive Output Equations from Output Maps

Output map from Transition/Output Table

Steps to FSM Design

\checkmark Construct a state/output table from the word description (or a state graph).
\checkmark State Minimization: Minimize the number of states (usually helps a bit).
\checkmark State Assignment: Coose a set of state variables and assign codes to named states.
\checkmark Substitute the state-variable combinations into the state/output table to create a transition/output table (next-state table) that shows the desired next-state variable combination for each state/input combination. Construct next-state K-maps as needed.
\checkmark Choose a flip-flop type (e.g. D, J-K, T) for the state memory.
\checkmark Construct an excitation table that shows the flip-flop input excitation values required to obtain the desired next-state value for each state/input combination.
\checkmark Derive flip-flop excitation equations from excitation table.
\checkmark Derive output equations from transition/output table.
O Draw logic diagram that shows combinational next-state and output functions as well as flip-flops.

