
1
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.1

Overview
m Last Lecture:
Ü What is the course all about & why is it important?
Ü What is a digital system? What is a binary digital system?
Ü Boolean Algebra, Truth tables
Ü Operators: inversion, and, or, xor, xnor (eq)
Ü Design Example: Translating a word problem to a

combinational logic function
Ü Multiplexers, Implementing the example using a multiplexer

m This Lecture:
Ü Design Example: Translating a word problem into a

sequential design language
Ü State Transition Graph
Ü State Transition Table
Ü Mealy and Moore Forms

CS150 Newton/Pister 1.2.2

Design Example: Automobile Lock

The automobile theft rate in Muldavia is so high that CyclesPerSecond
rental car agency has decided to add a new security device to their cars.
The initial system design has been completed and our consulting firm
has been retained to implement the device. The agency designers hand
us the following description:
"Please build us a small black box (2"x3"x0.5") we can attach to the dash
that consists of a keypad (keys 0-9) and two LEDs, one green and one
red. It should perform as follows:
Ü When the ignition is turned on, the red LED should light up and

the keypad is activated. However, the car will not start.
Ü If the driver enters a correct four-digit code, the green LED goes

on as well and the car can now be started by turning the ignition
switch further clockwise to the start position.

Ü If the code is not correct, the green light will not go on and the
car will not start."

2
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.3

Where Do We Start?

m Write down the inputs and outputs and list the (symbolic)
values they can take.

m Choose a "language" in which to express the behavior of
the machine. Is a truth table sufficient here? How would
you use it?

m For sequential systems, we will start by using state
transition tables or state transition graphs.

m We will be assuming discrete-valued time - "instant" to
"instant." At any particular instant, the finite number of
storage elements in the machine will have particular, well-
defined values stored in them - we will be describing
problems which can be implemented directly with a Finite-
State Machine.

CS150 Newton/Pister 1.2.4

Naming the Variables
m Inputs:
Ü Ignition: {off, on, start}
Ü Keypad: {0,… ,9}

m Outputs:
Ü Red Light: {on, off}
Ü Green Light: {on, off}
Ü StartCar: {yes, no}

m What else do we need?
Ü Internal “state” (memory,

store, “what’s happened up
until now?”, “where are
we?”

off
on

start

ignition

keypad

1 2 3

4 5 6

7 8 9
0

R G

3
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.5

Elements of a Finite-State Machine

Logic Network

ignition

keypad

R

G

“Summary
so far”

State

CS150 Newton/Pister 1.2.6

Elements of a Finite-State Machine

Combinational
Logic Network

ignition

keypad

R

G

“Summary
so far”

State

Present
State

Next
State

4
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.7

General Structure of Our Problem
at Time Tn

Combinational
Logic

Summary of Where
We Are at time Tn

New Input Data
(sensors)

New Output Data
(actions)

Summary of Where
We Got To

PRESENT STATE (PS) NEXT STATE (NS)

Will become PS
at Time Tn+1

CS150 Newton/Pister 1.2.8

Encoding the Variables
m Inputs:
Ü Ignition: {off, on, start}
Ü Keypad: {0,… ,9}

m Outputs:
Ü Red Light: {on, off}
Ü Green Light: {on, off}
Ü StartCar: {yes, no}

m What else do we need?
Ü Special value for when we

“don’t care” what the value
of an input (or an output) is.

Ü T or X or -

Value: off on start
ig 00 01 11

Value: 0 1 2 3
key 0000 0001 0010 0011

…
...

Value: off on
R 0 1

Value: off on
G 0 1

Value: no yes
start 0 1

Input vector: {ig | key }
output vector: { R | G | start }
notation: input/output
example:
00 **** / 0 0 0

5
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.9

Describing the Required Behavior

S0
00 **** / 0 0 0

ig key / R G start Reset state

S1

01 **** / 1 0 0

CS150 Newton/Pister 1.2.10

Choosing a Language to Represent the Problem

We need a "language" to represent:
(1) The Present State of the machine
(2) For each possible input value:

(2a) The corresponding output value(s)
(2b) The corresponding Next State

S0

S1

S2

Input1

Input2

Output1

Output2

Present
State

Next State after the value
Input1 is applied

Next State after the value
Input2 is applied

Output value(s) after the value
Input1 is applied

Output value(s) after the value
Input2 is applied

Transition

6
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.11

Describing the Required Behavior

S0
00 **** / 0 0 0

ig key / R G start Reset state

Correct: 0123

S2

01 0000 / 1 0 0

S3

01 0001 / 1 0 0

S4
01 0010 / 1 0 0

S4

01 0011 / 1 1 0

S1

01 **** / 1 0 0

Key on

S5

11 **** / 1 1 1

Car started!

CS150 Newton/Pister 1.2.12

Example Finite-State Machine
State Transition Diagram (Mealy)

A

B

D

C

E

1/0
0/1

0/1

1/1

0/0
0/0

1/0

0/1

1/1

1/0

Inputs / Outputs

Symbolic State

7
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.13

Example Finite-State Machine
State Transition Table (Mealy)

Present
State

Primary
Input

Next
State

Primary
Output

Next
State

Primary
Output

A

B

C

D

E

0 1

B

E

D

C

D

E

D

A

E

D

1

1

0

0

1

0

0

1

1

0

CS150 Newton/Pister 1.2.14

Describing the Required Behavior

Correct: 0123

ig key / R G start

S0
00 **** / 0 0 0

Reset state

S2

01 0000 / 1 0 0

S3

01 0001 / 1 0 0

S4
01 0010 / 1 0 0

S4

01 0011 / 1 1 0

S1

01 **** / 1 0 0

S5

11 **** / 1 1 1

00 **** / 0 0 0

*1 **** / 1 0 0
00 **** / 0 0 0

?

01 **** / 1 0 0

8
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.15

Elements of a Finite-State Machine

State: {S0 , S1 , S2 , … SN }

Combinational
Logic Network

ignition

keypad

R

G

“Summary
so far”

Present
State

Next
State

Require log2 N bits of “storage” to represent the state

CS150 Newton/Pister 1.2.16

Finite-State Machines

Combinational
Next-State Logic

Latches

Primary
Inputs
(PIs)

Primary
Outputs
(POs)

Mealy Machine

9
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.17

Example Finite-State Machine
Encoded States (Mealy)

100

010

000

001

110

1/0
0/1

0/1

1/1

0/0
0/0

1/0

0/1

1/1

1/0

011
101
111

A

B

D

C

E

1/0
0/1

0/1

1/1

0/0
0/0

1/0

0/1

1/1

1/0

CS150 Newton/Pister 1.2.18

Example Finite-State Machine
Next-State Logic (Mealy)

Present
State

Inputs

Input Output Next
State

100

100

010

010

001
...

Outputs

0

1

0

1

0
...

010

110

110

000

000
...

1

0

1

0

0
...

Combinational!

10
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.19

Example Finite-State Machine
Next-State Logic (Mealy)

in
ps(3)'

ps(1)'

ps(2)

ps(2)'

in'
ps(1)

ns(1)

ns(2)

ns(3)

out

CS150 Newton/Pister 1.2.20

Finite-State Machines

Combinational
Next-State Logic

Latches

Combinational
Output Logic

Primary
Inputs
(PIs)

Primary
Outputs
(POs)

Moore Machine

11
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.21

Example Finite-State Machine
State Transition Diagram (Moore)

A

B

D

C

E

1
0

0

1

0
0

1

0

1

1

Inputs

Symbolic State
0

0

0

1

1

Outputs

CS150 Newton/Pister 1.2.22

Example Finite-State Machine
State Transition Table (Moore)

Present
State

Primary
Input

Next
State

Primary
Output

A

B

C

D

E

0 1

B

E

D

C

D

E

D

A

E

D

0

0

1

1

0

12
CS150 Spring 98, Copyright © 1998 A. Richard Newton, Kris Pister

CS150 Newton/Pister 1.2.23

Elements of a Finite-State Machine

Combinational
Logic Network

ignition

keypad

R

G

Present
State

Next
State

CLK

Q D

CLK

Q D

CLK

Q D Data (D) latches

