

Race Conditions and Cycles

\[

\]

CS150 Newton/Pister

Example 3: Asynchronous Analysis
(a) Analyze the following asynchronous network using a flow table. Analyze the following asynchronous network using a
Starting in the stable total state state for which $\mathrm{X}=\mathrm{Z}=0$, Starting in the stable total state state for which $X=Z=0$,
determine the state and the output sequences when the input sequence is $X=0,1,0,1,0$,...
(b) Find any critical races which are present in the table.

CS150 Newton/Pister
14.1.4

Race-Free State Assignment
The assignment below is a universal state-assignment map that will work for any 4-row table
O The example can then be expanded as shown, with the additional rows added

CS150 Newton/Pister

Hamming Codes

o For n data bits and k check bits, $\mathrm{n}+\mathrm{k} \leq 2^{\mathrm{k}}-1$
O Grouping of bits for parity generation can be observed from listing of binary numbers:
$\begin{array}{llll}0 & 0 & 0 & \\ 1 & 0 & 0 & B_{1}=1 \text { for }(1,3,5,7) \\ 0 & 1 & 0 & B_{2}=1 \text { for }(2,3,6,7) \\ 1 & 1 & 0 & \end{array}$
$B_{3}=1$ for $(4,5,6,7)$

Hamming Codes

Add P_{13} as an overall parity bit: $001110010100 \mathrm{P}_{13}$ O Detect/Correct Rules as follows:

If $\mathrm{C}=0, \mathrm{P}=0$ no error
If $\mathrm{C} \neq 0, \mathrm{P}=1 \quad$ single error, correctable If $\mathrm{C} \neq 0, \mathrm{P}=0 \quad$ double error, uncorrectable If $\mathrm{C}=0, \mathrm{P}=1$ error occurred in P_{13}

Can also have far more sophisticated schemes
Covered in detail in communication \& information theory courses

Bandwidth and Latency

O Latency: The minimum time to get the first result (sec.) - the
one-time cost.
O Bandwidth: The maximum rate at which results can be
produced in the steady-state (values/sec.) - the incremental cost
OFor example, disc drives, RAM (normal, video), networks,
signal-processors (e.g. HDTV, radar)
CS150 Newton/Pister

Scheduling of Functional Units

Given a certain number of functional units (e.g. ALU's, RAM's), schedule a particular computation (from the HDL or software) onto a particular functional unit at a particular time relative to other operations.
Analogous problem scheduling "wires"
What about the values on the wires?

Binary Decision Diagrams
O In general: $\mathbf{f v}=\mathbf{X v} v^{\prime}$ flow $+\mathbf{X v}$ fhigh

Use of BDDs for Verification
$0 \mathbf{~ V 1}$ is a redundant vertex
$0 \mathbf{V 2}, \mathbf{V 3}$ represent the same function
$\mathbf{O A B D D}$ is a reduced binary decision graph
\rightarrow Reduction is $\mathbf{O}(\mathbf{N} * \log (\mathbf{N})$ for \mathbf{N} verticies
CS150 NewtonPister

Connectivity Verification

```
    (1) Read Network1 and Network2 into separate graph data structures (usually,
        node = transistor or gate, edge = connection).
    (2) Compute signatures for nodes or edges or both
        Compute signatures for nodes or edges or both.
        \rightarrow \text { Network-specific (local): Fanin types, \#fanouts, fanout types}
        \rightarrow \text { Network-specific (global): Distance from primary inputs, primary}
            outputs, nodes that are known to be the same in each network (e.g.
            named, primary inputs or outputs ("seeds")).
    (3) Hash signatures from both networks into single hash table.
    (4) If a hash table cell has:
        >2 nodes: ignore for now
        \rightarrow = 2 ~ n o d e s : ~ a ~ m a t c h ~ h a s ~ b e e n ~ f o u n d
        \rightarrow = 1 ~ n o d e : ~ a n ~ ( e a s y ! ) ~ e r r o r ~ h a s ~ b e e n ~ f o u n d ~
    (5) Add links between networks for nodes that have been matched.
    (6) Recompute hash functions for un-bound nodes and repeat until done or no change.
CS150 Newton/Pister```

