
1CS150 Spring 97 Page 1.1.1

CS150 Newton/Pister 14.1.1

Outline
m  Last time:
Ü Race-free State Assignment
Ü Excitation Equations
Ü Design Example: Implementation
Ü Summary of Asynchronous Design Process

m  This lecture:
Ô  Asynchronous Examples
Ô  State Assignment in Asynchronous
Ô  Error Detection & Correction
Ô  Review: Bandwidth and Latency
Ô  Binary Decision Diagrams

CS150 Newton/Pister 14.1.2

Race Conditions and Cycles

R

S Q

Q' R

S Q

Q'
X

L1 L2

0 1

00

01

11

10

Q1Q2
X

00

00 00

01

01

01

11

10

0 1

00

01

11

10

Q1Q2
X

00

00

01

01 11



2CS150 Spring 97 Page 1.1.2

CS150 Newton/Pister 14.1.3

Race Conditions

0 1

00

01

11

10

Q1Q2
X

00

00

01

10 10

11

11

01

CS150 Newton/Pister 14.1.4

Example 3: Asynchronous Analysis
(a) Analyze the following asynchronous network using a flow table.

Starting in the stable total state state for which X=Z=0,
determine the state and the output sequences when the input
sequence is X=0, 1, 0, 1, 0,...

(b) Find any critical races which are present in the table.

ZX



3CS150 Spring 97 Page 1.1.3

CS150 Newton/Pister 14.1.5

Race-Free State Assignment

m A race-free state assignment for any 4-row table can be found
using three state variables

m Example:

CS150 Newton/Pister 14.1.6

Race-Free State Assignment

m The assignment below is a universal state-assignment map that
will work for any 4-row table

m The example can then be expanded as shown, with the
additional rows added



4CS150 Spring 97 Page 1.1.4

CS150 Newton/Pister 14.1.7

Race-Free State Assignment
m Another universal assignment for 4-row tables is shown below

(M. Mano, Logic and Computer Design, Prentice Hall)

m Using this approach, the expanded example from before
becomes as shown below right

m This approach faster than previous general approach above.
Why?

CS150 Newton/Pister 14.1.8

Race-Free State Assignment
m Don’t cares can be used to make race-free assignment
m In example below-left, we need:

 col00 d→ a; col01 a→ b, c→ d; col11 b→ c; col10 a→ c, b→ d

m Looks like we need extra rows, but use the don’t cares:



5CS150 Spring 97 Page 1.1.5

CS150 Newton/Pister 14.1.9

Shared-Row Assignments

Consider the example above. We need at least three
state variables and maybe even four.

 e→ a, c→ a; e→ c→ a; c→ e→ a
or any of these going through an intermediate state

CS150 Newton/Pister 14.1.10

Shared-Row Assignment

m How do we get there? Trial and error...

or or

or

ororor

(*)



6CS150 Spring 97 Page 1.1.6

CS150 Newton/Pister 14.1.11

Shared-Row Assignment

m Result of using second option from previous slide:

CS150 Newton/Pister 14.1.12

Error Detection & Correction

m As transistors & wires become smaller, the number of electrons
used to represent a stored 1 or 0 decreases

m The probability that a cosmic ray, alpha particle, local electric
field (crosstalk) or some other disturbance will change a stored
value (or even the value on a wire) increases

m Two aspects:
Ü Error detection (e.g. parity)
Ü Error correction (e.g. Hamming Codes)
W 2-bit detect, 1-bit correct



7CS150 Spring 97 Page 1.1.7

CS150 Newton/Pister 14.1.13

Hamming Codes

m Most common types of error-correcting codes used in RAM
m Based on work of R. W. Hamming
m k parity bits are added to an n-bit word, forming a new n+k bit

word
m The positions numbered with powers of two are reserved for the

parity bits
m Can be used with words of any length
m Example: 8-bit data word 11000100

1 2 3 4 5 6 7 8 9 10 11 12

P1 P2 1 P4 1 0 0 P8 0 1 0 0

CS150 Newton/Pister 14.1.14

Hamming Codes
m Calculate parity bits as follows:

P1= xor(3,5,7,9,11) = 1⊕ 1 ⊕  0 ⊕  0 ⊕  0 = 0
P2= xor(3,6,7,10,11) = 0
P4= xor(5,6,7,12) = 1
P8= xor(9,10,11,12) = 1

m When bits are read from memory, compute check bits:
C1= xor(1,3,5,7,9,11)
C2= xor(2,3,6,7,10,11)
C4= xor(4,5,6,7,12)
C8= xor(8,9,10,11,12)

1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 1 0 0 1 0 1 0 0



8CS150 Spring 97 Page 1.1.8

CS150 Newton/Pister 14.1.15

Hamming Codes
m C=C8C4C2C1=0000 indicates no error has occurred
m Examples:

1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 1 0 0 1 0 1 0 0 no error

1 0 1 1 1 0 0 1 0 1 0 0 error in bit 1

0 0 1 1 0 0 0 1 0 1 0 0 error in bit 5

C8 C4 C2 C1

0 0 0 0 no error

0 0 0 1 error bit 1

0 1 0 1 error bit 5

CS150 Newton/Pister 14.1.16

Hamming Codes
m  For n data bits and k check bits, n+k ≤ 2k-1
m  Grouping of bits for parity generation can be observed from
listing of binary numbers:

B1 B2 B3

0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
5 1 0 1
6 0 1 1
7 1 1 1

B1=1 for (1,3,5,7)

B2=1 for (2,3,6,7)

B3=1 for (4,5,6,7)



9CS150 Spring 97 Page 1.1.9

CS150 Newton/Pister 14.1.17

Hamming Codes

m Add P13 as an overall parity bit: 001110010100P13

m Detect/Correct Rules as follows:

If C=0, P=0no error
If C≠ 0, P=1 single error, correctable
If C ≠ 0, P=0 double error, uncorrectable
If C=0, P=1error occurred in P13

m Can also have far more sophisticated schemes
m Covered in detail in communication & information theory

courses

CS150 Newton/Pister 14.1.18

NMM: Combinational Implementation

^ ^ ^ ^
output

input

ffff ff ff ff ff ff

ffff ff ff

time
clock
ticks



10CS150 Spring 97 Page 1.1.10

CS150 Newton/Pister 14.1.19

Pipelined Implementation

ffff ff ff ff ff ff

ffff ff ff ff ff ff ff

ffff ff ff ff ff ff ff ff

ffff ff ff ff ff ff

ffff ff ff

^ ^ ^
output

input
time^ ^ ^ ^ ^ ^ ^^ ^

stage 1

stage 2

stage 3

stage 4

CS150 Newton/Pister 14.1.20

Bandwidth and Latency

m Latency: The minimum time to get the first result (sec.) - the
one-time cost.

m Bandwidth: The maximum  rate at which results can be
produced in the steady-state (values/sec.) - the incremental cost

m For example, disc drives, RAM (normal, video), networks,
signal-processors (e.g. HDTV, radar)



11CS150 Spring 97 Page 1.1.11

CS150 Newton/Pister 14.1.21

Simple Dataflow Description: B^2 - 4AC

DUP

* *

*

-

B 4 A C

D

CS150 Newton/Pister 14.1.22

Scheduling of Functional Units

m Given a certain number of functional units (e.g. ALU's,
RAM's), schedule a particular computation (from the HDL or
software) onto a particular functional unit at a particular time
relative to other operations.

m Analogous problem scheduling "wires"
m What about the values on the wires?



12CS150 Spring 97 Page 1.1.12

CS150 Newton/Pister 14.1.23

Allocation of Functional Units:
Data Dependencies

DUP

* *

*

-

B 4 A C

D

r

t

u

s

v

"space"

"time"

DUP

*
*
*

1 2 3 4 5 6

-

s

t

u

r

v

CS150 Newton/Pister 14.1.24

Allocation of Functional Units:
Time-Space Tradeoffs

"space"

DUP

*
*

1 2 3 4

-

s

t
u

r

v

"space"

"time"

DUP

*

1 2 3 4

-

s

t ur

v



13CS150 Spring 97 Page 1.1.13

CS150 Newton/Pister 14.1.25

Allocation of Functional Units:
Sharing of Signal Links

DUP

* *

*

-

B 4 A C

D

r

t

u

s

v

α
βγδ

ε η

κ λ

µ

ζ

"space"

"time"

DUP

*
*
*

1 2 3 4 5 6

-

s

t

u

r

v

α
β

γ

δ ε
η κ

λ

µ

n

n

n

n

n

ζ

n

CS150 Newton/Pister 14.1.26

Allocation of Functional Units:
More Efficient Use of Links

"space"

"time"

DUP

*
*
*

1 2 3 4 5 6

-

s

t

u

r

v

α

β
γ

δ ε
η κ

λ µ

n

n

n

n

n

ζ



14CS150 Spring 97 Page 1.1.14

CS150 Newton/Pister 14.1.27

Design Using Multiplexers

AB
CD 00 01 11 10

00

01

11

10

0

2 6 14 10

111573

91351

8124

A

B

C

D

Z = ABD + C + BD

0

1

2

3

4

5

6

7

Z

S0S1S2

CS150 Newton/Pister 14.1.28

Binary Decision Diagrams

00

X1X1

X2X2X2X2

X3X3X3X3

11 00 11

f = X1.X2 + X3

m In general: fv = Xv' flow + Xv fhigh

low child
high child

00

X3X3

11

X3X3

11 11

X1X2
X3 00 01 11 10

0

1

0

5731

462

0 1 2 3 4 5 6 7



15CS150 Spring 97 Page 1.1.15

CS150 Newton/Pister 14.1.29

Implementation of Logic Using Switches

Shannon Expansion:
(T15) F(X,Y,Z) = X•F(1,Y,Z) + X'•F(0,Y,Z)
(T15') F(X,Y,Z) = (X+F(0,Y,Z))•(X'+F(1,Y,Z))

CS150 Newton/Pister 14.1.30

Binary Decision Diagrams

00

X1X1

X2X2X2X2

X3X3X3X3

11 00 11 11

f = X1.X2 + X3

f1 = 1

f2 = X3

f3 = X2' X3 + X2

low child
high child

V1

V2

V3



16CS150 Spring 97 Page 1.1.16

CS150 Newton/Pister 14.1.31

Use of BDDs for Verification

00

X1X1

X2X2X2X2

X3X3X3X3

11 00 11 11

m Condition on edges forces
order on variables.

m Order must be consistent with
all edges.

m For each edge, parent before
child in the order.
Ü X1 X2 X3

CS150 Newton/Pister 14.1.32

Use of BDDs for Verification

00

X1X1

X2X2X2X2

X3X3X3X3

11 00 11 11

V1

V2 V3

m V1 is a redundant vertex
m V2, V3 represent the same function
m A BDD is a reduced binary decision graph
Ü Reduction is O(N*log(N)) for N verticies



17CS150 Spring 97 Page 1.1.17

CS150 Newton/Pister 14.1.33

Use of BDDs for Verification

X1X1

X3X3

X2X2

00 11

m Each vertex corresponds to a partial assignment of inputs.
Ü V1: 0-, 10

m Result of reduction is a canonical form.

V1

CS150 Newton/Pister 14.1.34

Combinational Verification Using Canonical Form

Convert to
BDD

Convert to
BDD

Isomorphism
Check

Behavior
Functions the system must implement

Implementation-independent description

Behavior
Functions the system must implement

Implementation-independent description

Register
Components and their interconnections
Std. components & ROM, ASIC, PLD

Register
Components and their interconnections
Std. components & ROM, ASIC, PLD

Gate
Low-level components & nets

In terms of  ASIC library

Gate
Low-level components & nets

In terms of  ASIC library

Electrical
Voltages, currents and detailed models

Electrical
Voltages, currents and detailed models

Switch
Transistor-level description
Logic Values and Strengths

Switch
Transistor-level description
Logic Values and Strengths



18CS150 Spring 97 Page 1.1.18

CS150 Newton/Pister 14.1.35

Connectivity Verification

Network 1 Network 2

Hash TableHash Table

compute
signature

compute
signature

CS150 Newton/Pister 14.1.36

Connectivity Verification

(1) Read Network1 and Network2 into separate graph data structures (usually,
node = transistor or gate, edge = connection).

(2) Compute signatures for nodes or edges or both.
Ô   Type-specific: Gate type, #inputs, #outputs
Ô   Network-specific (local): Fanin types, #fanouts, fanout types
Ô   Network-specific (global): Distance from primary inputs, primary

outputs, nodes that are known to be the same in each network (e.g.
named, primary inputs or outputs ("seeds")).

(3) Hash signatures from both networks into single hash table.
(4) If a hash table cell has:

Ô   > 2 nodes: ignore for now
Ô   = 2 nodes: a match has been found
Ô   = 1 node: an (easy!) error has been found

(5) Add links between networks for nodes that have been  matched.
(6) Recompute hash functions for un-bound nodes and repeat until done or no change.


