
13.2.1CS150 Newton/Pister

Outline

m Last time:
Ô   Asynchronous Circuits
Ü Moore and Mealy Standard Forms
Ü Design Example: Word Problem

m This lecture:
Ü Race-free State Assignment
Ü Excitation Equations
Ü Design Example: Implementation
Ü Summary of Asynchronous Design Process

13.2.2CS150 Newton/Pister

Steps to Asynchronous FSM Design
3 Construct a Primitive Flow Table from the word statement of the problem.
3 Derive a minimum-row primitive flow  table or Reduced Primitive Flow

Table by eliminating redundant, stable total-states.
m Convert the resulting table to Mealy form, if necessary, so that the output

value is associated with the total state rather than the internal state.
m Derive a minimum-row flow table, or Merged Flow Table, by merging

compatible rows of the reduced primitive flow table using a merger
diagram. (Note: solution not necessarily unique)

m Perform race-free, or critical-race-free, state assignment, adding additional
states if necessary.

m Complete the Output Table to avoid momentary false outputs when
switching between stable total states.

m Draw logic diagram that shows ideal combinational next-state and output
functions as well as necessary delay elements.

13.2.3CS150 Newton/Pister

Conversion to Mealy Form for Merging:
Example 1

00 01  11 10 00 01 11 10
          1 1  2  -  3  0  -  -  - 
          2  1  2  4  -  -  0  -  -
          3  1  -  5  3  -  -  -  0
          4  -  6  4  3  -  - 1  -
          5  -  6  5  3  -  - 0  -
          6  1  6  5  -  - 0  -  -

 X1X2  Z

13.2.4CS150 Newton/Pister

Create Merger Diagram

1 2

6

5 4

3

What we are doing is choosing internal states that
can have the same code, though the total
states will still be different (since they will not
have the same code for the same inputs; if that
were possible they would have been
redundant).

Two rows of a reduced primitive Mealy flow table
are compatible and can be merged into a
single row iff there are no state or output
conflicts in any column.

Ô   Draw a line between any pair of rows (states)
which are compatible and can be merged.

Ô   Choose the sub-groups of fully-connected
rows that will result in the maximum
reduction. In this case, {1,2} and {3,5,6} are
best. We could also have chosen {1,3} and
{5,6}, or just {3,6} in which case no others
would be permitted.

13.2.5CS150 Newton/Pister

Example 1: After  Merging

00 01 11 10 00 01 11 10

a(1,2) 1 2 4 3 0 0 - -
b(3,5,6) 1 6 5 3 - 0 0 0
c (4) - 6 4 3 - - 1 -

X1X2

13.2.6CS150 Newton/Pister

Conversion to Mealy Form for Merging:
Example 2

00 01 11 10 00 01 11 10
          1  1  3  -  2  0  -  -  -
          2  1  -  6      2  -  -  - 0
          3  1  3  4  -  -  0  -  -
          4  -  3  4  5  -  -  1  -
          5  1  -  -  5  -  -  -  1
          6  -  3  6  -  -  -  0  -

 CS  Z



13.2.7CS150 Newton/Pister

Create Merger Diagram: Example 2

1 2

6

5 4

3

Choose {1,2,6} and {4,5}

13.2.8CS150 Newton/Pister

Steps to Asynchronous FSM Design
3 Construct a Primitive Flow Table from the word statement of the problem.
3 Derive a minimum-row primitive flow  table or Reduced Primitive Flow

Table by eliminating redundant, stable total-states.
3 Convert the resulting table to Mealy form, if necessary, so that the output

value is associated with the total state rather than the internal state.
3 Derive a minimum-row flow table, or Merged Flow Table, by merging

compatible rows of the reduced primitive flow table using a merger
diagram. (Note: solution not necessarily unique)

m Perform race-free, or critical-race-free, state assignment, adding additional
states if necessary.

m Complete the Output Table to avoid momentary false outputs when
switching between stable total states.

m Draw logic diagram that shows ideal combinational next-state and output
functions as well as necessary delay elements.

13.2.9CS150 Newton/Pister

Example: After State Reduction and Merging

00 01 11 10 00 01 11 10

a(1,2) 1 2 4 3 0 0 - -
b(3,5,6) 1 6 5 3 - 0 0 0
c (4) - 6 4 3 - - 1 -

X1X2

13.2.10CS150 Newton/Pister

Example 1: States Labelled in Terms of
Internal States

00 01 11 10 00 01 11 10

a a a c b 0 0 - -
b a b b b - 0 0 0
c - b c b - - 1 -

X1X2

13.2.11CS150 Newton/Pister

Example: Race-Free State Assignment
a

bc

a

bc

00

10 01

required
transition

m Line between states indicates required transition.
m Need assignment such that only one state variable changes during

each state transition

a

bc

00

11 01

a

bc

00

10 01

d
11

13.2.12CS150 Newton/Pister

Example: Critical-Race-Free State Assignment

00 01 11 10 00 01 11 10

a 00 00 00 10 01 0 0 - 0v
b 01 00 01 01 01 0u 0 0 0
d 11 - 01 - - - -s - -
c 10 - 11 10 00 - 1t 1 -

X1X2

m In col. 01, row C, 10->11->01: critical race avoided
m In col 10, could have directed transition via row d but already have

transition to b in row a, so use it.
m Fill in outputs corresponding to unstable states to avoid momentary

false outputs during transitions



13.2.13CS150 Newton/Pister

Critical-Race-Free State Assignment
via Shared-Row Assignments

00 01 11 10
      a 1 2 5 4
      b 7 2 3 10
      c 1 8 3 4
      d 7 8 5 4
      e 1 9 5 6
      f 11 8 3 6

m Required transitions:
col 00: e,c -> a; d->b
col 01: a->b; c,f->d
col 11: b,f->c; a,d->e
col 10: a,c->d; e->f

13.2.14CS150 Newton/Pister

Shared Row Assignment
m Consider required transitions: e,c -> a
m Could implement as: e->a, c->a; or e->c->a; or c->e->a; or

any of the above going through an intermediate state (or
states).

m To avoid critical races, must ensure that {a,c,e} are placed
in adjacent squares on the assignment map. Similar for
other constraints. Must satisfy:
{a,c,e}, {b,d}, {a,b}, {c,d,f}, {b,c,f}, {a,d,e}, {a,c,d},

{e,f}
a e
b d
x c
y f

13.2.15CS150 Newton/Pister

Completion of the Output Table

00 01 11 10 00 01 11 10

a 00 00 00 10 01 0 0 - 0v
b 01 00 01 01 01 0u 0 0 0
d 11 - 01 - - - -s - -
c 10 - 11 10 00 - 1t 1 -

X1X2

From State 00, input change 00->10 causes transition to stable state 01. To avoid glitch
if logic synthesis assigns "don't care" in output  to 1 for input value 10, make it a 0
(labelled v above).

From State 01, input change 01->00 causes transition to State 00, so avoid possible
glitch by assigning output in  State 01 for input 00 to 0 (u above)

From State 10, input change 11->01 causes transition to stable state 01, via  11. Since
output goes from 1 to 0, choose output at t above to be 1, consistent with the starting
value, but leave output at s a "don't care" since must make the transition somewhere
and either before or after State 11 is the same.

13.2.16CS150 Newton/Pister

Steps to Asynchronous FSM Design
3 Construct a Primitive Flow Table from the word statement of the problem.
3 Derive a minimum-row primitive flow  table or Reduced Primitive Flow

Table by eliminating redundant, stable total-states.
3 Convert the resulting table to Mealy form, if necessary, so that the output

value is associated with the total state rather than the internal state.
3 Derive a minimum-row flow table, or Merged Flow Table, by merging

compatible rows of the reduced primitive flow table using a merger
diagram. (Note: solution not necessarily unique)

3 Perform race-free, or critical-race-free, state assignment, adding additional
states if necessary.

3 Complete the Output Table to avoid momentary false outputs when
switching between stable total states.

m Draw logic diagram that shows ideal combinational next-state and output
functions as well as necessary delay elements.


