


















$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Completion of the Output Table										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	11	10	00	01	11	10		
glitch by assigning output in State 01 for input 00 to 0 (u above) From State 10, input change 11-301 causes transition to stable state 01, via 11. Since output goes from 1 to 0, choose output at t above to be 1, consistent with the starting	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
output goes from 1 to 0, choose output at t above to be 1, consistent with the starting											
value, but leave output at s a "don't care" since must make the transition somewhere and either before or after State 11 is the same.											
S150 Newton/Pister 13.2.15	S150 Newton/Pister									13	3.2.15

Steps to Asynchronous FSM Design

- Construct a *Primitive Flow Table* from the word statement of the problem.
 Derive a minimum-row primitive flow table or *Reduced Primitive Flow Table* by eliminating redundant, stable total-states.
 Convert the resulting table to Mealy form, if necessary, so that the output value is associated with the total state rather than the internal state.
 Derive a minimum-row flow table, or *Merged Flow Table* by merging compatible rows of the reduced primitive flow table using a merger diagram. (Note: solution not necessarily unique)
 Perform race-free, or critical-race-free, state assignment, adding additional states if necessary.
 Complete the *Output Table* to avoid momentary false outputs when switching between stable total states.
 Draw *logie diagram* that shows ideal combinational next-state and output functions as well as necessary delay elements.

150 Newton/Pister

13.2.16