Outline O Last time: \rightarrow Combinational Testability and Test-pattern Generation \rightarrow Faults in digital circuits \rightarrow What is a test? : Controllability \& Observability \rightarrow Redundancy \& testability \rightarrow Test coverage \& simple PODEM ATPG \rightarrow Sequential Test: What are sequential faults? \rightarrow SCAN Design This lecture: \rightarrow Asynchronous Circuits \rightarrow Moore and Mealy Standard Forms \rightarrow Design Example: Word Problem	
CS150 Newton/Pister	13.1.1

Asynchronous Circuits	
O Asynchronous Circuits:	
\rightarrow Operation is not synchronized by a clock.	
\rightarrow When an input change occurs, the state of the network can change almost immediately.	
O To simplify this challenging problem we consider only fundamental mode asynchronous circuits:	
\rightarrow The input signals will only change when the circuit is in a stable condition (i.e. no internal signals are changing).	
\rightarrow All of the input signals are considered to be levels, rather than pulses or edges.	
\rightarrow Inputs may not change simultaneously	
\rightarrow Asynchronous circuits may be structured as Mealy and Moore forms, as before, but delays in the feedback path are not clocked and may be different!	
CS150 Newton/Pister	13.1.3

D Latch Example:
 Transition Table

\[

\]

D Latch Example: State Table

	CD			
S	00	01	11	10
S0	S0	S0	S1	S0
S1	S1	S1	S1	S0

S*$=$ stable state

Transition Table
O A transition table has one row foreach possible
combination of the state variables.
\rightarrow
If the circuit has n feedback loops, it has $2 \wedge \mathrm{n}$ rows in
its transition table
:---
\rightarrow A circuit with m inputs has $2^{\wedge} \mathrm{m}$ columns in its
transition table.

Total State
The total state of a circuit is a particular combination of
the internal state (values stored in the feedback loops)
and input state (the current values of the circuit inputs).
A stable total state is a combination of internal state and
input state such that the next internal state predicted by
the transition table is the same as the current internal
state.
O If the next internal state is different, then the combination
is an unstable total state.
CS150 Newton/Pister

Races
In a feedback sequential circuit, a race is said to occur
when multiple internal variables change state as a result
of a single input variable changing state.
If the final state depends on the order in which the
variables change, the race is said to be critical.
CS150 Newton/Pister

Transition Table for D Flip-Flop					
	CLK D				
	Y1Y2Y3	00	0111	10	
	000	010	010000	000	
	001	011	011000	000	
	010	010	110110	000	
	011	011	111111	000	
	100	010	010111	111	
	101	011	011111	111	
	110	010	110111	111	
	111	011	111111	111	
			$\mathbf{Y} \mathbf{*}^{*} \mathbf{Y}{ }^{*} \mathbf{Y} \mathbf{3}^{*}$		
CS150 Newton/Pister					13.1.12

CLK D					
S	00	01	11	10	
S0	S2,01	S2,01	50,01	\$0,01	
S1	S3,10	S3,10	S0,01	S0,01	
S2	\$2,01	S6,01	S6,01	S0,01	
S3	33,10	S7,10	S7,10	S0,01	
S4	S2,01	S2,01	S7,11	S7,11	
S5	S3,10	S3,10	S7,10	S7,10	
S6	S2,01	56.01	S7,11	S7,11	
S7	S3,10	\$7,10	\$7,10	\$7,10	
S*					13.1.13

Flow and Output Table for the D Flip-Flop

Flow and Output Table for the D Flip-Flop					
	S	00	${ }^{4} \begin{gathered}\text { CLK D } \\ 11\end{gathered}$	10	
	$\overline{\text { so }}$	S2,01	S6,01 50,01		
	S2	\$2,01	S6,01 -,-	S0,01	
	S3	3,10	S7,10 -,-	S0,01	
	S6	S2,01	\$6,01 87,11	--	
	S7	S3,10	\$7,10 $\$ 7.10$	\$7,10	
S*					
CS150 NewtonPister					

Steps to Asynchronous FSM Design

O Construct a Primitive Flow Table from the word statement of the problem.
Derive a minimum-row primitive flow table or Reduced Primitive Flow Table by eliminating redundant, stable total-states.
O Convert the resulting table to Mealy form, if necessary, so that the
output value is associated with the total state rather than the internal state.
Derive a minimum-row flow table, or Merged Flow Table, by merging compatible rows of the reduced primitive flow table using a merger diagram. (Note: solution not necessarily unique)
O Perform race-free, or critical-race-free, state assignment, adding additional states if necessary.
O Complete the Output Table to avoid momentary false outputs when switching between stable total states.
O Draw logic diagram that shows ideal combinational next-state and output functions as well as necessary delay elements.

CS150 Newton/Pister	13.1.15

Design Example 1: Word Problem

An asynchronous network has two inputs and one output. The input sequence $\mathrm{X}_{1} \mathrm{X}_{2}=00,01,11$ causes the output, Z , to become 1 . The next input change then causes the output to return to 0 . No other input sequence will produce a 1 output.

Derivation of Primitive Flow Table: Cont.

Derivation of Primitive Flow Table: Cont.

O Primitive Flow Table: Only one stable state per row is permitted, so every change in input must result in an internal state change as well as a toatl state change (by definition)

Design Example 2: Word Problem

O A clock signal (\mathbf{C}) is to be gated on and off by another signal (S). The gating network must be such that only complete clock pulses appear at the output (\mathbf{Z}) even though S may change in the middle of a clock pulse. S will always be on or off for at least two clock pulses.

Derivation of Primitive Flow Table: Cont.

Derivation of Primitive Flow Table: Cont.

Steps to Asynchronous FSM Design

Construct a Primitive Flow Table from the word statement of the problem.
Derive a minimum-row primitive flow table or Reduced Primitive Flow Table by eliminating redundant, stable total-states.
Convert the resulting table to Mealy form, if necessary, so that the output value is associated with the total state rather than the internal state.
O Derive a minimum-row flow table, or Merged Flow Table, by merging
compatible rows of the reduced primitive flow table using a merger
agram. (Note: solution not necessarily unique
Perform race-free, or critical-race-free, state assignment, adding additional states if necessary.
Complete the Output Table to avoid momentary false outputs when
Draw logic diagram that shows ideal combinational next-state and output functions as well as necessary delay elements.

Minimum-Row Primitive Flow Table: Eliminate Redundant Stable Total States
Redundant States: Two stable total states are equivalent if:
(a) Their inputs are the same and
(b) Their outputs are the same and
(c) Their next-states are equivalent for each possible next input

In Example 1, possible candidates for combining are:
$\{4,5\}$ - no, because outputs not the same
$\{2,6\}$ - no, because next-states not equivalent under 11 input (states 4 and 5)
so no redundant states here.
In Example 2, possible candidates are:
$\{4,6\}$ - no, different outputs
so no redundant states here either.
CS150 Newton/Pister
ister

