Outline

O Last time:

- Combinational Testability and Test-pattern Generation
- → Faults in digital circuits
 → What is a test? : Controllability & Observability

- → Redundancy & testability
 → Test coverage & simple PODEM ATPG
 → Sequential Test: What are sequential faults?
- → SCAN Design

O This lecture:

- → Asynchronous Circuits
 → Moore and Mealy Standard Forms
 → Design Example: Word Problem

S150 Newton/Pister

13.1.1

Asynchronous Circuits (Feedback Sequential Circuits)

O Clocked Synchronous Circuits:

- → Change of state only occurs in response to a clock pulse
- → When this change of state requires that a number of flip-flops change their values, they do so simultaneously because they are synchronized by the common clock pulse.
- Input changes are assumed to occur in between clock pulses and outputs may be read during or immediately before a clock pulse.
- O Conditions where this model is too restrictive:
 - → The network has inputs which may change at any time and cannot be synchronized by a clock.
 - → Signal travel time down wires is significant and wire lengths in the circuit cannot be controlled
 → We want the network to operate as fast as possible

 - → The power dissipation overhead of clocking signals that do not change is unacceptable (we need "event-driven" circuits).

Asynchronous Circuits

- Operation is not synchronized by a clock.
 When an input change occurs, the state of the network can change almost immediately.
- → If several storage elements must change state, there is no guarantee they will do so at the same time.
- O To simplify this challenging problem we consider only fundamental
 - The input signals will only change when the circuit is in a stable condition (i.e. no internal signals are changing).

 - → All of the input signals are changing).
 → All of the input signals are considered to be levels, rather than pulses or edges.
 → Inputs may not change simultaneously
 → Asynchronous circuits may be structured as Mealy and Moore forms, as before, but delays in the feedback path are not clocked and may be different!

S150 Newton/Piste

D Latch Example C-D+(C-D'+Y')' Q C·D'+Y' Excitation Equation for Y*: $Y^* = CD + (CD' + Y')' = CD + C'Y + DY$

13.1.4

D Latch Example: **Transition Table**

D Latch Example: **State Table**

= stable state

13.1

Transition Table

- A transition table has one row foreach possible combination of the state variables.
 - → If the circuit has n feedback loops, it has 2^n rows in its transition table
- The table has one column for each input combination
 - → A circuit with m inputs has 2^m columns in its transition table.
- The circuit is monitoring its inputs continuously

CS150 Newton/Pister 13.1.7

Total State

- The total state of a circuit is a particular combination of the internal state (values stored in the feedback loops) and input state (the current values of the circuit inputs).
- A stable total state is a combination of internal state and input state such that the next internal state predicted by the transition table is the same as the current internal state.
- O If the next internal state is different, then the combination is an unstable total state

150 Newton/Pister 13.1.8

D Latch Example: Output Equations

- Q = CD + C'Y + DY Q = CD' + Y'
- O Y is the only internal state variable
- O Combined state and output table:

		CD		
S	00	01	11	10
S0	S0,01	S0,01 S1,10	S1,11	S0,01
S1	S1,10	S1,10	S1,10	S0,01
		S*, Q	/Q	

S150 Newton/Pister

Races

- O In a feedback sequential circuit, a race is said to occur when multiple internal variables change state as a result of a single input variable changing state.
- If the final state depends on the order in which the variables change, the race is said to be *critical*.

CS150 Newton/Pister 13.1.10

Transition Table for D Flip-Flop CLK D Y1Y2Y3 01 000 010 000 001 010 011 100 111 111 101 011 111 111 110 010 110 111 111 111 011 111 111 111 Y1*Y2*Y3* 13 1 12

State and Output Table for D Flip-Flop

	CLK D									
\mathbf{S}	00	01	11	10						
SO	S2,01	S2,01	S0,01	S0,01						
S1	S3,10	S3,10	S0,01	S0,01						
S2	\$2,01	S6,01	S6,01	S0,01						
S3	S3,10	S7,10	S7,10	S0,01						
S4	S2,01	S2,01	S7,11	S7,11						
S5	S3,10	S3,10	S7,10	S7,10						
S6	S2,01	S6,01	S7,11	S7,11						
S7	S3,10	\$7,10	§7,10	\$7,10						
	S*									

13.1.13 S150 Newton/Pister

Flow and Output Table for the D Flip-Flop

		(CLK D	
S	00	01	11	10
S0	S2,01	S6,01	\$0,01	\$0,01
S2	S2,01	S6,01	-,-	S0,01
S3	\$3,10	S7,10	-,-	S0,01
S6		\$6,01		-,-
S7	S3 10	\$7.10	\$7,10	87.10

13.1.14 CS150 Newton/Piste

Steps to Asynchronous FSM Design

- O Construct a Primitive Flow Table from the word statement of the problem.

 O Derive a minimum-row primitive flow table or *Reduced Primitive*
- Flow Table by eliminating redundant, stable total-states.

 Convert the resulting table to Mealy form, if necessary, so that the output value is associated with the total state rather than the internal
- O Derive a minimum-row flow table, or Merged Flow Table, by merging compatible rows of the reduced primitive flow table using a merger diagram. (Note: solution not necessarily unique)
- Perform race-free, or critical-race-free, state assignment, adding additional states if necessary.
 Complete the Output Table to avoid momentary false outputs when switching between stable total states.
- output functions as well as necessary delay elements.

S150 Newton/Pister

Design Example 1: Word Problem

• An asynchronous network has two inputs and one output. The input sequence $X_1X_2 = 00, 01, 11$ causes the output, Z, to become 1. The next input change then causes the output to return to 0. No other input sequence will produce a $\boldsymbol{1}$ output.

Fundamental mode, single input changes, so input can only change in stable total state and only one bit can change, so this total-state is impossible, since only stable total state is inputs 00 in this part. this row.

Derivation of Primitive Flow Table: Cont.

2	X1X	2			
	00	01	11	10	Z
(reset) 1	\mathbb{C}	2	-	3	0
(00,01) 2	1	(2)	4	-	0
(00,10) 3	1	-	5	3	0
(00,01,11) 4			4)	1
(00,10,11) 5			(5))	0

S150 Newton/Pister

Derivation of Primitive Flow Table: Cont.

O Primitive Flow Table: Only one stable state per row is permitted, so every change in input must result in an internal state change as well as a toatl state change (by definition).

	$\Delta 1 \Delta 1$	_			
	00	01	11	10	Z
(reset) 1	1	2	-	3	0
(00,01) 2	1	(2)	4		0
(00,10) 3	1	-	5	(3)	0
(00,01,11) 4	-	6	4	3	1
* , 5	-	6	(5)	3	0
* 6	1	6	5	-	0

States marked * cannot lead to a 1 output without first resetting.

13 1 17

13 1 18

Derivation of Primitive Flow Table: Cont.

10->11 cannot occur in State 5 since S is assumed to be off for at least two clock pulses. Same for 11->10 in State 6.

13.1.21

S150 Newton/Pister

Steps to Asynchronous FSM Design

- Construct a *Primitive Flow Table* from the word statement of the problem.

 Derive a minimum-row primitive flow table or *Reduced Primitive Flow Table* by climinating redundant, stable total-states.

 Convert the resulting table to Mealy form, if necessary, so that the output value is associated with the total state rather than the internal state.

 Derive a minimum-row flow table, or *Merged Flow Table*, by merging compatible rows of the reduced primitive flow table using a merger diagram. (Note: solution not necessarily unique)

 Perform race-free, or critical-race-free, state assignment, adding additional states if necessary.

 Complete the *Output Table* to avoid momentary false outputs when switching between stable total states.

 Draw *logic diagram* that shows ideal combinational next-state and output

- Draw logic diagram that shows ideal combinational next-state and output functions as well as necessary delay elements.

13.1.2 S150 Newton/Pister

Minimum-Row Primitive Flow Table: Eliminate Redundant Stable Total States

- O Redundant States: Two stable total states are equivalent if:
 - (a) Their inputs are the same and
 - (b) Their outputs are the same and
 - (c) Their next-states are equivalent for each possible next input

In Example 1, possible candidates for combining are:

4.5] - no, because outputs not the same
{2,6} - no, because next-states not equivalent under 11 input (states 4 and 5)

so no redundant states here.

In Example 2, possible candidates are:
{4,6} - no, different outputs
{2,5} - no, different outputs

so no redundant states here either

13 1 2

Removal of Redundant States: Example X1X2

	AIAZ	•				
	00	01	11	10	Z1Z2	
1 2 3	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	7 5	-	4	1 1 0 1	Examine stable states in same column (same input) that have
	-	7	3	11	1 0	same output:
4	2	Ō	3	(4)	0 0	00: {2,6,8} -under input 01, {2,6} goe to different, not-
5 6	16	(2)	9	- 11	1 1	equivalent next states.
7	6	$\stackrel{\prime}{\bigcirc}$	14	11	0 1	Similarly for {6,8}. {2,8} equiv. iff {5,12} equiv.
8	8	12	-	4	0 1	01: {5,12} - yes
9	-	7	9	13	0 1	11: {3,10} iff {4,11}
10	-	7	(10)	4	1 0	10: {4,11} iff {3,10} and {5,12}.
11	8	Ō	10	(11)	0 0	leads to:
12	6	(12)	9	Ō	1 1	
13	8	-	14	(13)	1 1	{2,8}, {5,12}, {3,10}, {4,11}
14	1 -	12	(14)	11	0 0	so eliminate 8, 10, 11, 12
CLEO NI						12

13 1 2

Remova	xix2 00 - 2 6 6 1 - 2	01 7 5 7 5 7 7 7	11 - 3 3 9 - 14 9 14 14	10 4 4 4 4 - 4 - 13 13 4	Z1Z2 1 1	Exa	ample	
CS150 Newton/Pister							13.1.2	25