
13.1.1CS150 Newton/Pister

Outline
m Last time:
Ô Combinational Testability and Test-pattern Generation
Ô Faults in digital circuits
Ô What is a test? : Controllability & Observability
Ô Redundancy & testability
Ô Test coverage & simple PODEM ATPG
Ô Sequential Test: What are sequential faults?
Ô SCAN Design

m This lecture:
Ü Asynchronous Circuits
Ü Moore and Mealy Standard Forms
Ü Design Example: Word Problem

13.1.2CS150 Newton/Pister

Asynchronous Circuits
(Feedback Sequential Circuits)

m Clocked Synchronous Circuits:
Ô Change of state only occurs in response to a clock pulse
Ô When this change of state requires that a number of flip-flops change

their values, they do so simultaneously because they are synchronized by
the common clock pulse.

Ô Input changes are assumed to occur in between clock pulses and outputs
may be read during or immediately before a clock pulse.

m Conditions where this model is too restrictive:
Ô The network has inputs which may change at any time and cannot be

synchronized by a clock.
Ô Signal travel time down wires is significant and wire lengths in the circuit

cannot be controlled
Ô We want the network to operate as fast as possible
Ô The power dissipation overhead of clocking signals that do not change is

unacceptable (we need "event-driven" circuits).

13.1.3CS150 Newton/Pister

Asynchronous Circuits
m Asynchronous Circuits:
Ô Operation is not synchronized by a clock.
Ô When an input change occurs, the state of the network can

change almost immediately.
Ô If several storage elements must change state, there is no

guarantee they will do so at the same time.

m To simplify this challenging problem we consider only fundamental
mode asynchronous circuits:
Ô The input signals will only change when the circuit is in a stable

condition (i.e. no internal signals are changing).
Ô All of the input signals are considered to be levels, rather than

pulses or edges.
Ô Inputs may not change simultaneously
Ô Asynchronous circuits may be structured as Mealy and Moore

forms, as before, but delays in the feedback path are not clocked
and may be different!

13.1.4CS150 Newton/Pister

D Latch Example

Excitation Equation for Y*:
Y* = CD + (CD' +Y')' = CD + C'Y + DY

delay

13.1.5CS150 Newton/Pister

D Latch Example:
Transition Table

Y 00 01 11 10

0 0 0 1 0

1 1 1 1 0

Y*

CD

13.1.6CS150 Newton/Pister

D Latch Example:
State Table

S 00 01 11 10

S0 S0 S0 S1 S0

S1 S1 S1 S1 S0

S*

CD

= stable state

13.1.7CS150 Newton/Pister

Transition Table

m A transition table has one row foreach possible
combination of the state variables.
Ô If the circuit has n feedback loops, it has 2^n rows in

its transition table

m The table has one column for each input combination
Ô A circuit with m inputs has 2^m columns in its

transition table.

m The circuit is monitoring its inputs continuously

13.1.8CS150 Newton/Pister

Total State

m The total state of a circuit is a particular combination of
the internal state (values stored in the feedback loops)
and input state (the current values of the circuit inputs).

m A stable total state is a combination of internal state and
input state such that the next internal state predicted by
the transition table is the same as the current internal
state.

m If the next internal state is different, then the combination
is an unstable total state.

13.1.9CS150 Newton/Pister

D Latch Example: Output Equations

m Q = CD + C'Y + DY
/Q = CD' + Y'

m Y is the only internal state variable
m Combined state and output table:

S 00 01 11 10

S0 S0,01 S0,01 S1,11 S0,01

S1 S1,10 S1,10 S1,10 S0,01

S*, Q /Q

CD

13.1.10CS150 Newton/Pister

Races

m In a feedback sequential circuit, a race is said to occur
when multiple internal variables change state as a result
of a single input variable changing state.

m If the final state depends on the order in which the
variables change, the race is said to be critical.

13.1.11CS150 Newton/Pister

Analysis Example: Positive Edge-Triggered
D Flip-Flop

13.1.12CS150 Newton/Pister

Transition Table for D Flip-Flop

Y1Y2Y3 00 01 11 10
 000 010 010 000 000
 001 011 011 000 000
 010 010 110 110 000
 011 011 111 111 000
 100 010 010 111 111
 101 011 011 111 111
 110 010 110 111 111
 111 011 111 111 111

Y1*Y2*Y3*

CLK D

13.1.13CS150 Newton/Pister

State and Output Table for D Flip-Flop

S 00 01 11 10
S0 S2,01 S2,01 S0,01 S0,01
S1 S3,10 S3,10 S0,01 S0,01
S2 S2,01 S6,01 S6,01 S0,01
S3 S3,10 S7,10 S7,10 S0,01
S4 S2,01 S2,01 S7,11 S7,11
S5 S3,10 S3,10 S7,10 S7,10
S6 S2,01 S6,01 S7,11 S7,11
S7 S3,10 S7,10 S7,10 S7,10

S*

CLK D

13.1.14CS150 Newton/Pister

Flow and Output Table for the D Flip-Flop

S 00 01 11 10
S0 S2,01 S6,01 S0,01 S0,01

S2 S2,01 S6,01 -,- S0,01
S3 S3,10 S7,10 -,- S0,01
S6 S2,01 S6,01 S7,11 -,-

S7 S3,10 S7,10 S7,10 S7,10

S*

CLK D

13.1.15CS150 Newton/Pister

Steps to Asynchronous FSM Design
m Construct a Primitive Flow Table from the word statement of the

problem.
m Derive a minimum-row primitive flow table or Reduced Primitive

Flow Table by eliminating redundant, stable total-states.
m Convert the resulting table to Mealy form, if necessary, so that the

output value is associated with the total state rather than the internal
state.

m Derive a minimum-row flow table, or Merged Flow Table, by
merging compatible rows of the reduced primitive flow table using a
merger diagram. (Note: solution not necessarily unique)

m Perform race-free, or critical-race-free, state assignment, adding
additional states if necessary.

m Complete the Output Table to avoid momentary false outputs when
switching between stable total states.

m Draw logic diagram that shows ideal combinational next-state and
output functions as well as necessary delay elements.

13.1.16CS150 Newton/Pister

Design Example 1: Word Problem
m An asynchronous network has two inputs and one output.

The input sequence X1X2 = 00, 01, 11 causes the output, Z,
to become 1. The next input change then causes the output
to return to 0. No other input sequence will produce a 1
output.

00 01 11 10 Z
(reset) 1 1 2 - 3 0
(00,01) 2 2 0
(00,10) 3 3 0

 X1X2

Fundamental mode, single input changes, so input can only change
in stable total state and only one bit can change, so this total-
state is impossible, since only stable total state is inputs 00 in
this row.

13.1.17CS150 Newton/Pister

Derivation of Primitive Flow Table: Cont.

00 01 11 10 Z
(reset) 1 1 2 - 3 0
(00,01) 2 1 2 4 - 0
(00,10) 3 1 - 5 3 0
(00,01,11) 4 4 1
(00,10,11) 5 5 0

 X1X2

13.1.18CS150 Newton/Pister

Derivation of Primitive Flow Table: Cont.

00 01 11 10 Z
(reset) 1 1 2 - 3 0
(00,01) 2 1 2 4 - 0
(00,10) 3 1 - 5 3 0
(00,01,11) 4 - 6 4 3 1
 * 5 - 6 5 3 0
 * 6 1 6 5 - 0

 X1X2

States marked * cannot lead to a 1 output
without first resetting.

m Primitive Flow Table: Only one stable state per row
is permitted, so every change in input must result in
an internal state change as well as a toatl state change
(by definition).

13.1.19CS150 Newton/Pister

Design Example 2: Word Problem
m A clock signal (C) is to be gated on and off by another

signal (S). The gating network must be such that only
complete clock pulses appear at the output (Z) even though
S may change in the middle of a clock pulse. S will always
be on or off for at least two clock pulses.

13.1.20CS150 Newton/Pister

Derivation of Primitive Flow Table: Cont.

00 01 11 10 Z
 1 1 3 - 2 0
 2 1 - 2 0
 3 3 4 - 0
 4 - 3 4 1

 CS

13.1.21CS150 Newton/Pister

Derivation of Primitive Flow Table: Cont.

00 01 11 10 Z
 1 1 3 - 2 0
 2 1 - 6 2 0
 3 1 3 4 - 0
 4 - 3 4 5 1
 5 1 - - 5 1
 6 - 3 6 - 0

 CS

10->11 cannot occur in State 5 since S is assumed
to be off for at least two clock pulses. Same for
11->10 in State 6.

13.1.22CS150 Newton/Pister

Steps to Asynchronous FSM Design
3 Construct a Primitive Flow Table from the word statement of the problem.
m Derive a minimum-row primitive flow table or Reduced Primitive Flow

Table by eliminating redundant, stable total-states.
m Convert the resulting table to Mealy form, if necessary, so that the output

value is associated with the total state rather than the internal state.
m Derive a minimum-row flow table, or Merged Flow Table, by merging

compatible rows of the reduced primitive flow table using a merger
diagram. (Note: solution not necessarily unique)

m Perform race-free, or critical-race-free, state assignment, adding additional
states if necessary.

m Complete the Output Table to avoid momentary false outputs when
switching between stable total states.

m Draw logic diagram that shows ideal combinational next-state and output
functions as well as necessary delay elements.

13.1.23CS150 Newton/Pister

Minimum-Row Primitive Flow Table:
Eliminate Redundant Stable Total States
m Redundant States: Two stable total states are equivalent if:

(a) Their inputs are the same and
(b) Their outputs are the same and
(c) Their next-states are equivalent for each possible next

input

In Example 1, possible candidates for combining are:
{4,5} - no, because outputs not the same
{2,6} - no, because next-states not equivalent under 11 input (states

4 and 5)
so no redundant states here.
In Example 2, possible candidates are:

{4,6} - no, different outputs
{2,5} - no, different outputs

so no redundant states here either.

13.1.24CS150 Newton/Pister

Removal of Redundant States: Example

00 01 11 10 Z1Z2
1 1 7 - 4 1 1
2 2 5 - 4 0 1
3 - 7 3 11 1 0
4 2 - 3 4 0 0
5 6 5 9 - 1 1
6 6 7 - 11 0 1
7 1 7 14 - 1 0
8 8 12 - 4 0 1
9 - 7 9 13 0 1
10 - 7 10 4 1 0
11 8 - 10 11 0 0
12 6 12 9 - 1 1
13 8 - 14 13 1 1
14 - 12 14 11 0 0

X1X2

Examine stable states in same
column (same input) that have
same output:

00: {2,6,8} -under input 01, {2,6}
goe to different, not-
equivalent next states.
Similarly for {6,8}. {2,8}
equiv. iff {5,12} equiv.

01: {5,12} - yes
11: {3,10} iff {4,11}
10: {4,11} iff {3,10} and {5,12}.
leads to:
{2,8}, {5,12}, {3,10}, {4,11}
so eliminate 8, 10, 11, 12

13.1.25CS150 Newton/Pister

Removal of Redundant States: Example

00 01 11 10 Z1Z2
1 1 7 - 4 1 1
2 2 5 - 4 0 1
3 - 7 3 4 1 0
4 2 - 3 4 0 0
5 6 5 9 - 1 1
6 6 7 - 4 0 1
7 1 7 14 - 1 0
9 - 7 9 13 0 1
13 2 - 14 13 1 1
14 - 5 14 4 0 0

X1X2

