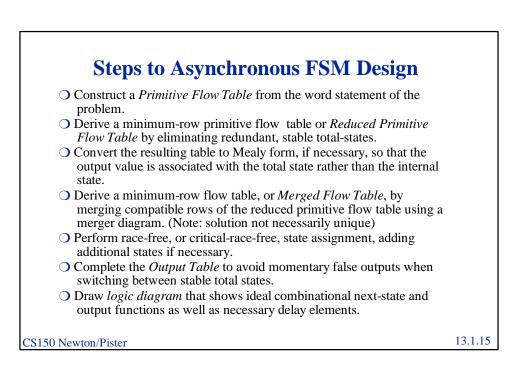
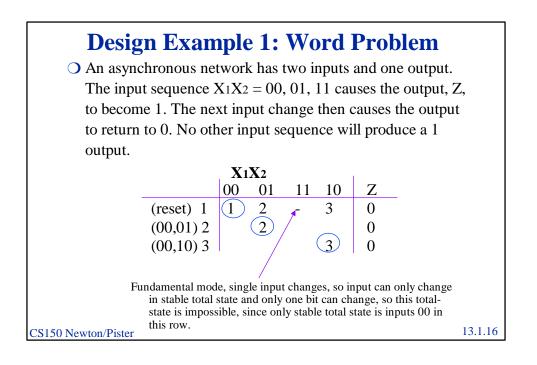

 $\bigcirc Q = CD + C'Y + DY$ /Q = CD' + Y'

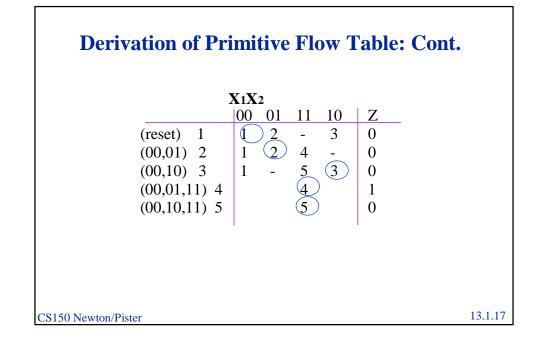
• Y is the only internal state variable

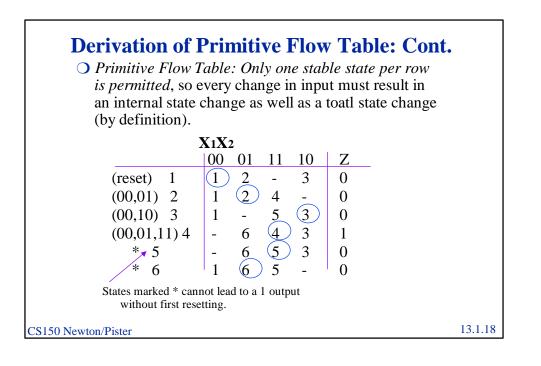
• Combined state and output table:

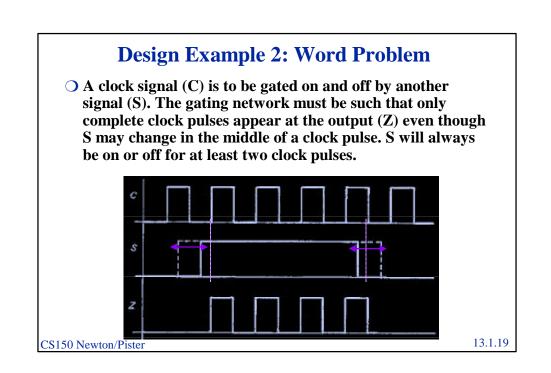
			CD				
	S	00	01	11	10		
-	S0	S0,01	S0,01	S1,11	S0,01	_	
	S1	S1,10	S1,10	S1,10	S0,01		
			S*, Q	/Q			
CS150 Newton/Pis	ster						13.1.9

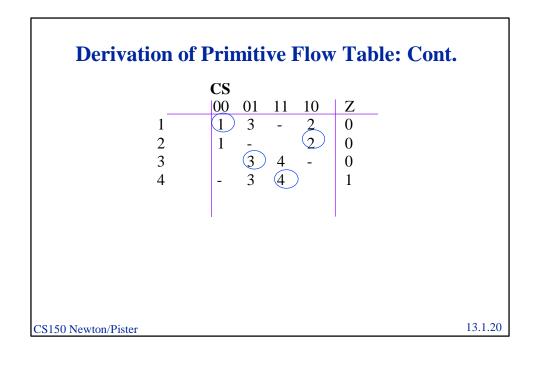


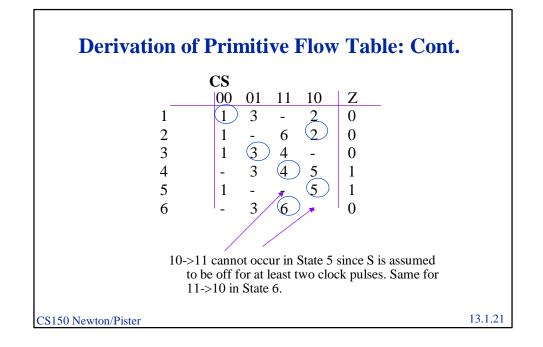


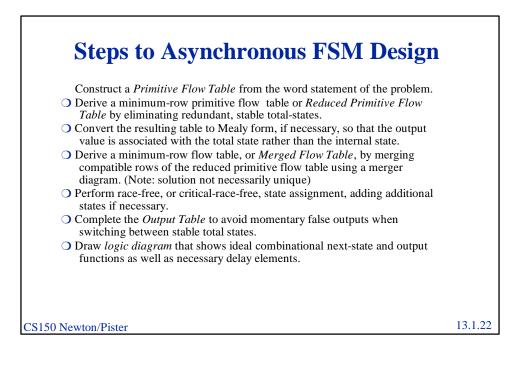

Trai	nsition	Tab	le fo	r D]	Flip-]	Flop	
			CLI	K D			
	Y1Y2Y3	00	01	11	10		
	000	010	010	000	000		
	001	011	011	000	000		
	010	010	110	110	000		
	011	011	111	111	000		
	100	010	010	111	111		
	101	011	011	111	111		
	110	010	110	111	111		
	111	011	111	111	111		
			Y 1* Y 2	2*Y3*			
CS150 Newton/Pister							13.1.

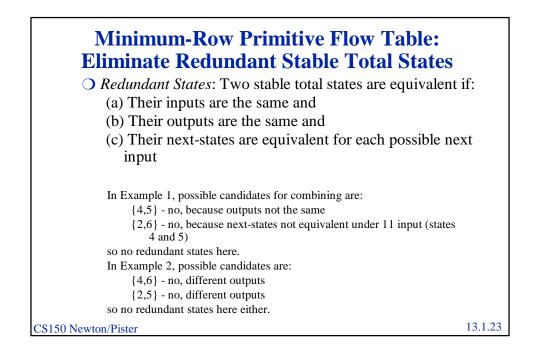

		(CLK D		
S	00	01	11	10	
S0	S2,01	S2,01	S0,01	S0,01	
S1	S3,10	S3,10	S0,01	S0,01	
S2	\$2,01	S6,01	S6,01	S0,01	
S3	S3,10	S7,10	S7,10	S0,01	
S4	S2,01	S2,01	S7,11	S7,11	
S 5	S3,10	S3,10	S7,10	S7,10	
S6	S2,01	\$6,01	S7,11	S7,11	
S7	S3,10	\$7,10	\$7,10	\$7,10	


	CLK D
S	00 01 11 10
S0	S2,01 S6,01 S0,01 S0,01
S2	S2,01 S6,01 -,- S0,01
S 3	\$3,10 \$7,10 -,- \$0,01
S6	S2,01 \$6,01 S7,11 -,-
S7	S3,10 \$7,10 \$7,10 \$7,10
	S*









	R X1X2	emo	val o	f Re	dundan	t States: Example
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ \end{array} $	$\begin{array}{c} 00 \\ \hline 1 \\ \hline 2 \\ \hline - \\ 2 \\ 6 \\ \hline 6 \\ 1 \\ \hline 8 \\ - \\ - \\ 8 \\ 6 \\ 8 \\ - \\ - \\ 8 \\ 6 \\ 8 \\ - \\ - \\ 8 \\ 6 \\ 8 \\ - \\ - \\ - \\ 8 \\ 6 \\ 8 \\ - \\ - \\ - \\ - \\ - \\ 8 \\ 6 \\ 8 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} 01 \\ 7 \\ 5 \\ 7 \\ \hline \\ 5 \\ 7 \\ \hline \\ 7 \\ 12 \\ 7 \\ 7 \\ \hline \\ 12 \\ 12 \\ 12 \end{array}$	$ \begin{array}{c} 11 \\ - \\ 3 \\ 9 \\ - \\ 14 \\ - \\ 9 \\ 10 \\ 9 \\ 14 \\ 14 \end{array} $	$ \begin{array}{c} 10 \\ 4 \\ 11 \\ - \\ 11 \\ - \\ 4 \\ 13 \\ 4 \\ 11 \\ - \\ 13 \\ 11 \end{array} $	$\begin{array}{c} Z1Z2\\ 1 & 1\\ 0 & 1\\ 1 & 0\\ 0 & 0\\ 1 & 1\\ 0 & 1\\ 1 & 0\\ 0 & 1\\ 1 & 0\\ 0 & 0\\ 1 & 1\\ 1 & 1\\ 1 & 1\\ 0 & 0\\ \end{array}$	 Examine stable states in same column (same input) that have same output: 00: {2,6,8} -under input 01, {2,6} goe to different, not-equivalent next states. Similarly for {6,8}. {2,8} equiv. iff {5,12} equiv. 01: {5,12} - yes 11: {3,10} iff {4,11} 10: {4,11} iff {3,10} and {5,12}. leads to: {2,8}, {5,12}, {3,10}, {4,11} so eliminate 8, 10, 11, 12
CS150 Nev	wton/Pi	ster)			13.1.24

	X1X2					
	00	01	11	10	Z1Z2	
1		7	-	4	1 1	
2	(2)	5	-	4	0 1	
3	-	7	(3)	4	1 0	
4	2	-	3	(4)	0 0	
5	6	(5)	9	-	1 1	
6	(6)	7	-	4	0 1	
7	1	(7)	14	-	1 0	
9	-	7	(9)	13	0 1	
13	2	-	14	(13)	1 1	
14	' <u>-</u>	5	(14)	4	0 0	

٦

Γ