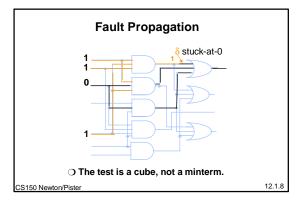

Outline O Last time: → Deriving the State Diagram & Datapath (Cont.) → Mapping the Datapath onto Control O This lecture: Combinational Testability and Test-pattern Generation Faults in digital circuits What is a test?: Controllability & Observability Redundancy & testability Test coverage & simple PODEM ATPG Sequential Test: What are sequential faults? SCAN Design CS150 Newton/Pister 12.1.1



Fault Models

- Input or output pin (not entire net!) stuck at logic 0 or stuck at logic 1.
- Open circuit
 - Can make a combinational circuit sequential!
- Short circuit

12.1.7 S150 Newton/Pister

Optimality & Redundancy in **Combinational Logic**

Circuit with redundant fault:

δ stuck-at-0 f = (a.b).(c+d).c' = (a.b.c + a.b.d).c' = a.b.c.c' + a.b.d.c' Circuit with $\delta = 0$ f = (a.b).c'.d

= a.b.d.c'

S150 Newton/Pister

12.1.9

Path-Oriented DEcision Making [Goel, 1981]

- (1) Assign all Primary Inputs (PI) to the value "don't care" ().
- (2) Given an output signal and a desired value for the output, trace a path to the PIs to obtain a PI assignment.
- (3) Simulate the PI vector to see if it sets up the desired value on the output. If so, terminate.
- (4) If the opposite value is set, assign an opposite value to the PI and re-simulate. If desired value is set, terminate.
- (5) If the output remains unspecified, repeat the path tracing to set another PI, as necessary.
- O Procedure continues until either:
 - → A successful PI assignment has been found (circuits not equivalent).
 - → All possible PI assignments have been exhausted.

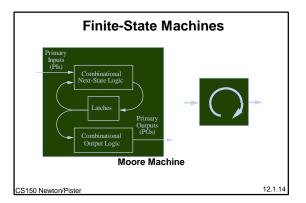
12.1.10 CS150 Newton/Pister

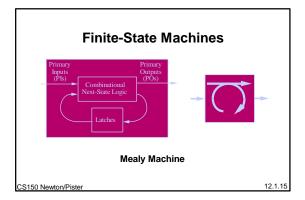
Cover Extraction O Covers can be generated with as many "don't cares" in the present state part as possible. S150 Newton/Piste 12.1.1

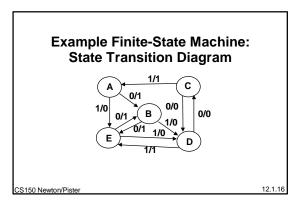
Testability and Logic Synthesis

O Important Issue:

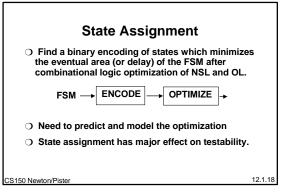
Generating tests for circuits with redundancies is very difficult.

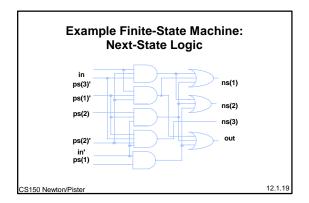

→ Must use algorithms which decrease the number of redundancies or eliminate them completely during synthesis.

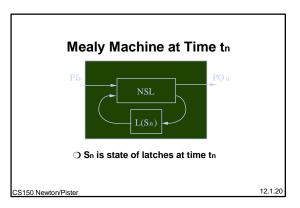

12 1 12

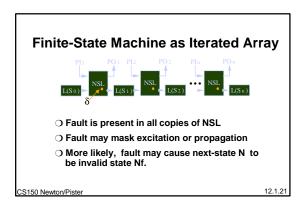

Test Generation for Finite-State Machines

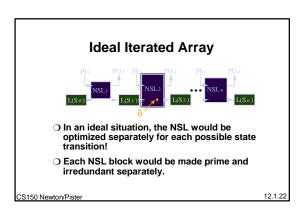
- Irredundant combinational logic does not imply 100% sequential testability
- Sequential Faults: Faults may not be excited ("controlled") by primary inputs; faults may not be propagated to primary outputs ("observed").

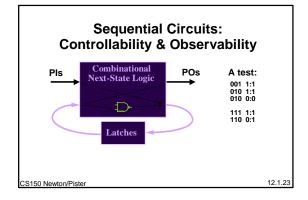

CS150 Newton/Pister 12.1.13

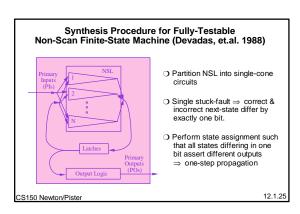








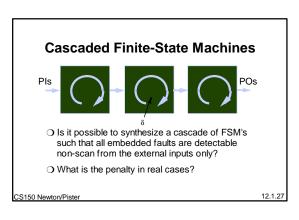


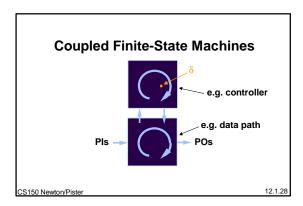


Scan Design Make all flip-flops scan (i.e. direct read and write access) All inputs to the combinational logic can be set and all outputs can be read. The sequential testing problem becomes a combinational testing problem. "Overkill" in virtually all cases. Area and time penalty; often a longer testing time. But scan can be inserted automatically.

12.1.24

CS150 Newton/Pister

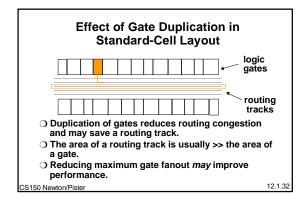


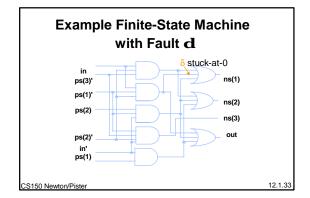

Synthesis Procedure for Fully-Testable Non-Scan Finite-State Machines

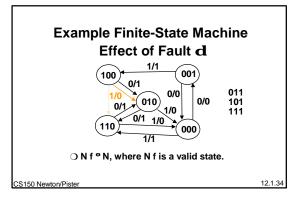
Given a state-transition graph (STG) of a FSM, a 100%-testable logic-level implementation of the machine is produced

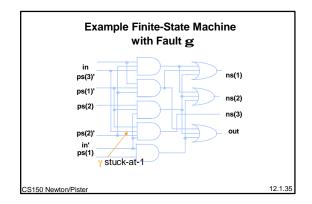
- O No scannable latches required
- O Uses partitioned logic approach and constrained state assignment
- Small penalty

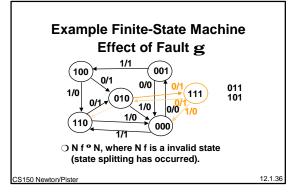
CS150 Newton/Pister 12.1.26

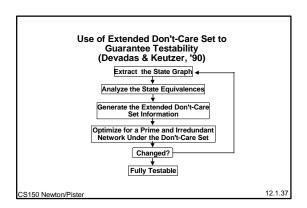


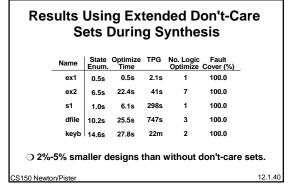


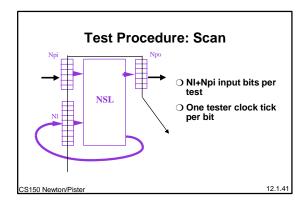

Example FSMs					
Name	No. Inputs	No. Outputs	No. States	No. Edges	
sse	7	7	13	59	
tbk	6	3	16	787	
dfile	2	1	24	99	
planet	7	19	48	118	
scf	27	54	97	168	
S150 Newton/Pister					1

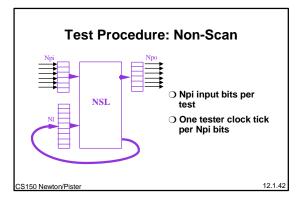

1	Op	timized onl	v	Optir	nized and Te	estable
Name	No. Gates	Fault Cover (%)	TPG time	No. Gates	Fault	TPG time
sse	91	84.6	70s	129	100	5s
tbk	181	98.6	72s	231	98.6	4s
dfile	124	96.9	104s	144	100	2s
planet	417	98.8	373s	449	100	14s
scf 502 96.1 83m 541 100 71s Output logic block contained combinational redundancies						


Constrained State Assignment (single cones)					
Name		mized only Normalized Area	Optimized No. Gates	d and Testable Normalized Area	€
sse	91	1.00	129	1.34	
tbk	181	1.00	231	1.10	
dfile	124	1.00	144	0.98	
planet	417	1.00	449	0.86	
scf	502	1.00	541	1.01	
CS150 Newton/P	ister			1	12.1.31









Example FSMs					
Name	No. Inputs	No. Outputs	No. States	No. Edges	
ex1	2	2	6	24	
ex2	2	1	13	57	
s1	8	6	20	110	
dfile	2	1	24	96	
keyb	7	2	19	170	
CS150 Newton/Pister					12.1.38

Results of Synthesis Procedure Fault Cover (%) 23 97.9 1.1s 2.0s ex1 35 2.2s 42s 6.1s 1.8m ex2 105 303s 4.0s s1 77 97.8 6.2s 332s >1h dfile 1.2m 12.1.39 CS150 Newton/Pister

What About Testing Time?

(Ghosh et. al. 1989)

Nun Name	nber of To Scan	est Bits S for T
ex1	4,032	13,728
ex2	29,696	111,510
ex3	55,680	134,290
des	8768	22,826
key	11,856	51,968
viterbi	15,168	224,950

CS150 Newton/Pister 12.1.43

Viterbi Chip

- Part of a system for real-time continuous speech recognition developed by Prof's. Broderson & Rabaey at Berkeley.
- O Largest chip in the chip-set for the system.
- Implements the Viterbi algorithm for mapping an observation (some speech) into the most likely sequence of states in the speech model being used.
- O Chip Statistics:

25,000 transistors 116 inputs, 44 outputs.

10 x11.5 mm die size

CS150 Newton/Pister 12.1.44

What About Testing Time?

	Tester Cycles		Tes	t Bits
Name	Scan	S for T	Scan	S for T
ex1	4,032	208	4,032	13,728
ex2	29,696	590	29,696	111,510
ex3	55,680	1,033	55,680	134,290
des	8,768	202	8768	22,826
key	11,856	203	11,856	51,968
viterbi	15,168	2,045	15,168	224,950

S150 Newton/Pister 12.1.45

A Revolution in Test in the Late 1990s?

- Can Synthesize a Guaranteed Fully-Testable, Non-Scan Implementation of Any Collection of FSMs.
 - √ Almost always requires fewer gates or less area than full scan.
 - Almost always requires shorter tester times (in many cases by one or two orders of magnitude) than full scan.
 - √ Can handle faults in embedded machines, machines with feedback, etc. - any topology of interconnected machines.
 - √ Test patterns generated as a by-product of the synthesis, so synthesis time represents a saving of ATPG time.

CS150 Newton/Pister 12.1.46

Synthesis-Directed Sequential Test

- Entire-chip full-scan-based design-for-test will be obsolete by the end of the 1990s
 - → Will be used for some very-specific on-chip structures (e.g. ROM, RAM, maybe Datapath) and for some chip boundaries.
- Circuit-structure-specific and BILBO-like test styles will continue to be used for go-nogo tests.
- Architectural memory structures will continue to be accessible directly for the pins.

S150 Newton/Pister 12.1.47

Synthesis-Directed Sequential Test

- Test will be incorporated directly into the synthesis process
 - → Guaranteed fully-testable non-scan or partialscan designs will be produced by the synthesis process.
 - → A complete set of test patterns will be a byproduct of the process

CS150 Newton/Pictor