
11.2.1CS150 Newton/Pister

Outline

m Last time:
Ô Introduction to Computer Organization
Ô Control
Ô Datapath
Ô I/O Interface
Ô Bussing Strategies

m This lecture:
Ô Deriving the State Diagram & Datapath (Cont.)
Ô Mapping the Datapath onto Control

11.2.2CS150 Newton/Pister

Finite State Machines for Simple CPUs
State Diagram and Datapath Derivation
Processor Specification:

Instruction Format:

Memory Interface:

Load from memory: Mem[XXX] → AC;
Store to memory: AC → Mem[XXX];
Add from memory: AC + Mem[XXX] → AC;
Branch if accumulator is negative: AC < 0 ⇒ XXX → PC;

15 14 13 0

Op
Code

00 = LD
01 = ST
10 = ADD
11 = BRN

Address

M
A
R

M
B
R

14

16

[0:2 -1]
<15:0>

14

MemoryRequest
Read/Write

Wait

11.2.3CS150 Newton/Pister

Finite State Machines for Simple CPUs
Deriving the State Diagram and Datapath

First pass state diagram:

Reset

Instruction
Fetch

Operation
Decode

LD ST ADD BRN
Operation
Execution

11.2.4CS150 Newton/Pister

Reset/0 → PC

Reset/
PC → MAR,
PC + 1 → PC

Reset/

Wait/

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

Wait/Mem → MBR

Wait/MBR → IR

RES

IF1

IF2

IF0

Deriving the State Diagram and Datapath
Assume Synchronous Mealy Machine:
 Transitions associated with arcs rather than states

Reset State (State 0)
and Instruction Fetch

Sequence

Reset State (State 0)
and Instruction Fetch

Sequence

On Reset:
 zero the PC
 Mem Request unasserted
 Mem asserts Wait signal

11.2.5CS150 Newton/Pister

Reset/0 → PC

Reset/
PC → MAR,
PC + 1 → PC

Reset/

Wait/

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

Wait/Mem → MBR

Wait/MBR → IR

RES

IF1

IF2

IF0

Deriving the State Diagram and Datapath
Assume Synchronous Mealy Machine:
 Transitions associated with arcs rather than states

Reset State (State 0)
and Instruction Fetch

Sequence

Reset State (State 0)
and Instruction Fetch

Sequence

On Reset:
 zero the PC
 Mem Request unasserted
 Mem asserts Wait signal

Instruction Fetch:
 issue read request
 4 cycle handshake on Wait signal

11.2.6CS150 Newton/Pister

Deriving the State Diagram and Datapath
Assume Synchronous Mealy Machine:
 Transitions associated with arcs rather than states

Reset State (State 0)
and Instruction Fetch

Sequence

Reset State (State 0)
and Instruction Fetch

Sequence
On Reset:
 zero the PC
 Mem Request unasserted
 Mem asserts Wait signal

Instruction Fetch:
 issue read request
 4 cycle handshake on Wait signal

Note: No explicit mention of the
 busses being used to implement
 register transfers!

Reset/0 → PC

Reset/
PC → MAR,
PC + 1 → PC

Reset/

Wait/

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

Wait/Mem → MBR

Wait/MBR → IR

RES

IF1

IF2

IF0

11.2.7CS150 Newton/Pister

Deriving the State Diagram and Datapath
Operation Decode State

Four Way Next State Branch based on opcode bits

IR<15:14>=00
01 10 11

LD0 ST0 AD0 BR0

OD

11.2.8CS150 Newton/Pister

IR<15:14>=00/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/MBR → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

LD0

LD1

LD2

RES

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence
like IFetch, except that
operand address comes
from IR and data should
be loaded into AC

11.2.9CS150 Newton/Pister

IR<15:14>=00/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/MBR → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

LD0

LD1

LD2

RES

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence
like IFetch, except that
operand address comes
from IR and data should
be loaded into AC

11.2.10CS150 Newton/Pister

IR<15:14>=00/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/MBR → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

LD0

LD1

LD2

RES

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence
like IFetch, except that
operand address comes
from IR and data should
be loaded into AC

11.2.11CS150 Newton/Pister

Deriving the State Diagram and Datapath

Execution Sequences

Load Sequence
like IFetch, except that
operand address comes
from IR and data should
be loaded into AC

IR<15:14>=00/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/MBR → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

LD0

LD1

LD2

RES

11.2.12CS150 Newton/Pister

IR<15:14>=01/
IR<13:0> → MAR,
AC → MBR

Wait/
MAR → Memory,
MBR → Memory,
0 → Read/Write,
1 → Request

Wait/

Wait/

Wait/

Wait/
0 → Read/Write,

1 → Request,
MAR → Memory,
MBR → Memory

Wait/

OD

ST0

ST1

ST2

RES

Deriving the State Diagram and Datapath
Store Execution Sequence

Memory write sequence

11.2.13CS150 Newton/Pister

IR<15:14>=01/
IR<13:0> → MAR,
AC → MBR

Wait/
MAR → Memory,
MBR → Memory,
0 → Read/Write,
1 → Request

Wait/

Wait/

Wait/

Wait/
0 → Read/Write,

1 → Request,
MAR → Memory,
MBR → Memory

Wait/

OD

ST0

ST1

ST2

RES

Deriving the State Diagram and Datapath

Store Execution Sequence

Memory write sequence

11.2.14CS150 Newton/Pister

IR<15:14>=01/
IR<13:0> → MAR,
AC → MBR

Wait/
MAR → Memory,
MBR → Memory,
0 → Read/Write,
1 → Request

Wait/

Wait/

Wait/

Wait/
0 → Read/Write,

1 → Request,
MAR → Memory,
MBR → Memory

Wait/

OD

ST0

ST1

ST2

RES

Deriving the State Diagram and Datapath

Store Execution Sequence

Memory write sequence

11.2.15CS150 Newton/Pister

Deriving the State Diagram and Datapath

IR<15:14>=10/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/
MBR + AC → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

AD0

AD1

AD2

RES

Add Execution Sequence

Similar to Load sequence
 Add MBR, AC rather than
 simply transfer MBR to AC

11.2.16CS150 Newton/Pister

IR<15:14>=10/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/
MBR + AC → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

AD0

AD1

AD2

RES

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence
 Add MBR, AC rather than
 simply transfer MBR to AC

11.2.17CS150 Newton/Pister

IR<15:14>=10/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/
MBR + AC → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

AD0

AD1

AD2

RES

Deriving the State Diagram and Datapath

Similar to Load sequence
 Add MBR, AC rather than
 simply transfer MBR to AC

11.2.18CS150 Newton/Pister

IR<15:14>=10/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/
MBR + AC → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

AD0

AD1

AD2

RES

Deriving the State Diagram and Datapath

Add Execution Sequence

Similar to Load sequence
 Add MBR, AC rather than
 simply transfer MBR to AC

11.2.19CS150 Newton/Pister

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence
 Add MBR, AC rather than
 simply transfer MBR to AC

IR<15:14>=10/
IR<13:0> → MAR

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/Mem → MBR

Wait/
MBR + AC → AC

Wait/

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

Wait/

OD

AD0

AD1

AD2

RES

11.2.20CS150 Newton/Pister

IR<15:14> = 11/

AC<15> = 0/
AC<15> = 1/

IR<13:0> → PC

OD

BR0

RES

Deriving the State Diagram and Datapath

Branch Execution Sequence

11.2.21CS150 Newton/Pister

Deriving the State Diagram and Datapath
Branch Execution Sequence

Replace PC with
Operand Address if
AC < 0

Otherwise, do nothing

IR<15:14> = 11/

AC<15> = 0/
AC<15> = 1/

IR<13:0> → PC

OD

BR0

RES

11.2.22CS150 Newton/Pister

Deriving the State Diagram and Datapath
Revised/Complete State Diagram

Simplify Wait Looping

Eliminate some Wait states

At this point, Wait must be
asserted, so why loop on
Wait?

Why loop on Wait when
resync will take place at
state IF0?

Reset

Wait/

Wait/

Wait/

Wait/

Wait/

Wait/

RES

IF0

IF1

IF2

OD

LD0 ST0 AD0 BR0

LD1 ST1 AD1

LD2 AD2

Wait/ Wait/ Wait/

Wait/ Wait/ Wait/

11.2.23CS150 Newton/Pister

Deriving the State Diagram and Datapath
State Machine Inputs and Outputs so far:

Inputs:
 Reset
 Wait
 IR<15:14>
 AC<15>

Outputs:
 0 → PC
 PC + 1 → PC
 PC → MAR
 MAR → Memory Address Bus
 Memory Data Bus → MBR
 MBR → Memory Data Bus
 MBR → IR
 MBR → AC
 AC → MBR
 AC + MBR → AC
 IR<13:0> → MAR
 IR<13:0> → PC
 1 → Read/Write
 0 → Read/Write
 1 → Request

11.2.24CS150 Newton/Pister

Processor Signal Flow

Read/Write
Request
0 → PC
PC + 1 → PC
PC → MAR
MAR → Memory Address Bus
Memory Data Bus → MBR
MBR → Memory Data Bus
MBR → IR
MBR → AC

AC → MBR
AC + MBR → AC
IR<13:0> → MAR
IR<13:0> → PC

IR<15:14>
AC<15>

Reset Wait
Mem
Addr
Bus

Mem
Data
Bus

D
A
T
A
P
A
T
H

C
O
N
T
R
O
L

Memory

11.2.25CS150 Newton/Pister

Mapping onto Datapath Control
Specification so far is independent of bussing strategy
Implied transfers:

This is the point-to-point connection scheme

Operand Fetch
IFetch Branch

Memory
Address

Bus

Memory
Data
Bus

Add

Store
Add

Add
Load

IFetch

M
A
R

P
C

I
R

A

B

A
C

M
B
R

11.2.26CS150 Newton/Pister

Mapping onto Datapath Control
Observe that instruction fetch and operand fetch take place at
 different times

This implies that IR, PC, and MAR transfers can be implemented
 by single bus (Address Bus)

Combine MBR, IR, ALU B, and AC connections (Memory Bus)

Combine ALU, AC, and MBR connections (Result Bus)

Three bus architecture:
 AC + MBR → AC implemented in single state

11.2.27CS150 Newton/Pister

Mapping onto Datapath Control

AC has two inputs, RBUS and MBUS
 (Other registers except MBR have single input and output)

Dual ported configuration is more complex

Better idea: reuse existing paths were possible
 MBR → AC transfer implemented by PASS B ALU operation

Address Bus Result Bus

M
A
R

P
C

I
R

A
C

A

B

M
B
R

Memory Bus

Memory
Address

Bus

Memory
Data
Bus

11.2.28CS150 Newton/Pister

Mapping onto Datapath Control
Detailed implementation of register transfer operations

More detailed control operations are called microoperations

One register transfer operation = several microoperations

Some operations directly implemented by functional units:
e.g., ADD, Pass B, 0 → PC, PC + 1 → PC

Some operations require multiple control operations:
e.g., PC → MAR implemented as
 PC → ABUS and ABUS → MAR

11.2.29CS150 Newton/Pister

Mapping onto Datapath Control

Tri-state Control

Load Input
PC implemented by

counter with COUNT
and CLEAR inputs

Address
Bus

MAR PC

LD

ABUS → MAR

PC → ABUS

CLR CNT

0 → PC PC + 1 → PC

11.2.30CS150 Newton/Pister

Mapping onto Datapath Control
Timing of State Changes and Microoperations

Takes place
immediately

Deferred til next
clock edge

Deferred til next
clock edge

RES IF0 IF1
CLK

Reset

0 → PC

PC + 1 → PC

PC → ABUS

ABUS → MAR

PC gets 0

PC gets
PC + 1

PC on
ABUS

MAR latches
ABUS

11.2.31CS150 Newton/Pister

Mapping onto Datapath Control
Relationship between register transfer and microoperations:

Register Transfer Microoperations

0 → PC 0 → PC (delayed);

PC + 1 → PC PC + 1 → PC (delayed);

PC → MAR PC → ABUS (immediate),

ABUS → MAR (delayed);

MAR → Address Bus MAR → Address Bus (immediate);

Data Bus → MBR Data Bus → MBR (delayed);

MBR → Data Bus MBR → Data Bus (immediate);

MBR → IR MBR → ABUS (immediate),

ABUS → IR (delayed);

MBR → AC MBR → MBUS (immediate),

MBUS → ALU B (immediate),

ALU PASS B (immediate),

ALU Result → RBUS (immediate),

RBUS → AC (delayed);

11.2.32CS150 Newton/Pister

Mapping onto Datapath Control
Relationship between register transfer and microoperations:

Register Transfer Microoperations
AC → MBR AC → RBUS (immediate),

RBUS → MBR (delayed);
AC + MBR → AC AC → ALU A (immediate),

MBR → MBUS (immediate),
MBUS → ALU B (immediate),
ALU ADD (immediate),
ALU Result → RBUS (immediate),
RBUS → AC (delayed);

IR<13:0> → MAR IR → ABUS (immediate),
ABUS → IR (delayed);

IR<13:0> → PC IR → ABUS (immediate),
ABUS → PC (delayed);

1 → Read/Write Read (immediate);
0 → Read/Write Write (immediate);
1 → Request Request (immediate);

Special microoperations for AC → ALU and ALU Result → RBUS
not strictly necessary since these connections can be hardwired

11.2.33CS150 Newton/Pister

Mapping onto Datapath Control

Revised microoperation signal flow

5 inputs

make sure that Reset and
 Wait are synchronized

16 datapath control lines

2 memory control lines

ABUS → MAR
ABUS → PC
MAR → Memory Address Bus
Memory Data Bus → MBR
MBR → Memory Data Bus
MBR → MBUS
MBUS → IR
MBUS → ALUB
RBUS → AC
RBUS → MBR
ALU ADD
ALU PASS B

Read/Write
Request
0 → PC
PC + 1 → PC
PC → ABUS
IR → ABUS

Memory

C
O
N
T
R
O
L

D
A
T
A
P
A
T
H

Reset Wait
Mem
Addr
Bus

Mem
Data
Bus

IR<15:14>
AC<15>

