Outline

O Last time:
=> Introduction to Computer Organization
= Control
= Datapath
= 1/OlInterface
= Bussing Strategies
O Thislecture:
=> Deriving the State Diagram & Datapath (Cont.)
= Mapping the Datapath onto Control

CS150 Newton/Pister 11.2.1

Finite State Machines for Simple CPUs

State Diagram and Datapath Derivation

Processor Specification: 151413 0
Instruction Format: L[] Address
op 00=LD
Code 01=ST
10=ADD

Load from memory: Mem[XXX] ® AC; 11=BRN
Storetomemory: AC® Mem[XXX];

Add frommemory: AC + Mem[XXX] ® AC;

Branch if accumulator isnegative: AC<0p XXX ® PC;

Memory Interface: 14

>

Request Memory

Read/Write &, | 14
¢ Wait [0:27 -1
<15:0>

ElGﬁa

‘|§UUJ§| |;UJ>§|‘

CS150 Newton/Pister - 11.2.2

Finite State M achines for Simple CPUs

Deriving the State Diagram and Datapath

/\/Reset

> Instruction
Fetch

First pass state diagram:

Operation
Decode

LD ST ADD RN
Operation
Execution

CS150 Newton/Pister 11.2.3

Deriving the State Diagram and Datapath

Assume Synchronous M ealy M achine:
Transitions associated with arcsrather than states

Reset/0 ® PC
Reset/ @

Reset State (State 0)
and Instruction Fetch

Sequence

On Reset:
zerothe PC
Mem Request unasser ted
Mem asserts Wait signal

CS150 Newton/Pister

Deriving the State Diagram and Datapath

Assume Synchronous M ealy M achine:
Transitions associated with arcsrather than states

Reset/0 ® PC
Reset State (State 0) Resed m/
and Instruction Fetch PC ® MAR.
Sequence PC+1® PC
On Reset: ‘@
zerothe PC

Mem Request unasserted
Mem asserts Wait signal

Instruction Fetch:

issue read request
4 cycle handshake on Wait signal

CS150 Newton/Pister 11.25

Deriving the State Diagram and Datapath

Assume Synchronous Meay Machine:
Transitions associated with arcs rather than states

Reset State (State 0)
and Instruction Fetch

Sequence

On Reset:
zerothe PC
Mem Request unasserted
Mem asserts Wait signa

Instruction Fetch:
issue read request
4 cycle handshake on Wait signal

Note: No explicit mention of the
busses being used to implement
register transfers!

CS150 Newton/Pister

PC ® MAR,
PC+1® PC

Wait/
MAR® Memory,

Wait/ 1® Read/Write,
1® Read/Write, 1® Request
1® Request,

MAR® Memory Wait/Mem ® MBR

Wait/
Wait/MBR® IR
11.2.6

Deriving the State Diagram and Datapath

01 10 \1

Four Way Next State Branch based on opcode bits

Operation Decode State

1R<15:14>=00

CS150 Newton/Pister 11.2.7

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence @

like | Fetch, except that :Eiiéf;o,\; AR
operand address comes '

from IR and data should (100)

be loaded into AC

CS150 Newton/Pister 2.8

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence @

. IR<15:14>=00/
like | Fetch, except that IR<13:0> ® MAR
operand address comes

from IR and data should wait/
be loaded into AC Wait/
MAR® Memory,
1® Read/Write,
@ 1® Request
CS150 Newton/Pister

11.2.9

Deriving the State Diagram and Datapath

Execution Sequences

L oad Sequence @

like | Fetch, except that IR<15:14>=00/
operand address comes IR<13:0> ® MAR
from IR and data should Watl
be loaded into AC Waitl

) MAR® Memory,

1® R d/V\\/N—?“/ 1 ® Read/Write,
eanivrite, 1® Request
1® Reguest, @ e

MAR® Memory Wait/Mem ® MBR

CS150 Newton/Pister

11.2.10]

Deriving the State Diagram and Datapath

Execution Sequences @
IR<15:14>=00/

Load Sequence IR<13:0> ® MAR

like | Fetch, except that Wat/

operand address comes Wit/

from IR and data should MAR® Memory

be loaded into AC Wait/ 1® ReadWrite,

1 ® Read/Write
’ 1 ® Request
1® Reguest, @ o

MAR® Memory Wait/Mem ® MBR

Wait/ @
Wait/MBR® AC

CS150 Newton/Pister 11.2.11]

Deriving the State Diagram and Datapath
Store Execution Sequence

Memory write sequence IR<15:14>=01/
IR<13:0> ® MAR,

AC ® MBR

CS150 Newton/Pister 11.2.12)

Deriving the State Diagram and Datapath

Store Execution Sequence

IR<15:14>=01/

Memory write sequence IR<13:0> ® MAR,

- AC ® MBR
Wait/
Wait/

MAR® Memory,
MBR ® Memory,

0 ® Read/Write,
1® Request

CS150 Newton/Pister

11.2.13]

Deriving the State Diagram and Datapath

Store Execution Sequence @
_ IR<15:14>=01/
Memory write sequence IR<13:0> ® MAR,
_ AC ® MBR
Wait/
Wait/
Wait/ MAR® Memory,
0 ® Read/Write, MBR ® Memory,

1® Request, 0 ® Read/Write,
MAR® Memory, 1® Request
MBR® Memory
Wait/

CS150 Newton/Pister

11.2.14]

Deriving the State Diagram and Datapath

Add Execution Sequence (o0)

Similar to Load sequence IR<15; 14>=10/
Add MBR, AC rather than IR<13:0> ® MAR
simply transfer MBR to AC @

CS150 Newton/Pister 11.2.15

Deriving the State Diagram and Datapath
Add Execution Sequence @
Similar to Load sequence IR<15:14>=10/

Add MBR, AC rather than IR<13:0> ® MAR
simply transfer MBR to AC @

CS150 Newton/Pister 11.2.16

Deriving the State Diagram and Datapath

Similar to Load sequence @
Add MBR, AC rather than IR<15:14>=10/
simply transfer MBR to AC IR<13:0> ® MAR
(o
Wait/
MAR® Memory,
1 ® Read/Write,
'@ 1® Request

CS150 Newton/Pister 11.2.17

Deriving the State Diagram and Datapath

Add Execution Sequence @

Similar to Load sequence R<15:14>=10/
Add MBR, AC rather than IR<13:0> ® MAR
simply transfer MBR to AC

Wait/
Wait/
’ MAR® Memory,
H/ 1 ® Read/Write,
1 ® Read/Write,
1® Request
1® Request,
MAR® Memory
Wait/Mem ® MBR

CS150 Newton/Pister 11.2.18

Deriving the State Diagram and Datapath
Add Execution Sequence
©

Similar to Load sequence
Add MBR, AG rather then IR<15:14>=10/
simply transfer MBR to AC IR<13.0> ® MAR
Wait/ @
Wait/
Wait/ MAR® Memory,
1 ® Read/Write,

1 ® Read/Write, 1® Request
1® Request, @

MAR® Memory
Wait/Mem ® MBR

Wait/
Wait/
MBR +AC ® AC

11.2.19]

CS150 Newton/Pister

Deriving the State Diagram and Datapath

IR<15:14> =11/

Branch Execution Sequence

BRO

11.2.20]

CS150 Newton/Pister

Deriving the State Diagram and Datapath
Branch Execution Sequence
©
IR<15:14> =11/

AC<15>=1/
IR<13:0> ® PC AC<15>=0/

Replace PC with / S

Operand Addressiif
AC<0
Otherwise, do nothing

CS150 Newton/Pister 11.2.21]

Deriving the State Dlagram and Datapath

Revised/Complete State Diagram

Simplify Wait Looping

Eliminate some Wait states

At this point, Wait must be
asserted, so why loop on
Wait?

Why loop on Wait when
resync will take place at
state | FO?

CS150 Newton/Pister 11.2.22)

Deriving the State Diagram and Datapath

State Machine I nputs and Outputs so far:

Inputs:
Reset
Wait

Outputs:

IR<15:14>

AC<15>

CS150 Newton/Pister

0e PC

PC+1® PC

PC® MAR

MAR ® Memory Address Bus
Memory DataBus® MBR
MBR® Memory DataBus
MBR® IR

MBR® AC

AC® MBR
AC+MBR® AC
IR<13:0>® MAR
IR<13:.0>® PC

1® Read/Write

0® Read/Write

1® Request

11.2.23]

Processo

r Sgnal Flow

Memory |

Reset

Yy

Wait

rOx42Z200

CS150 Newton/Prster——

AA
Mem Mem
Addr Data
Bus Bus

IH4>»T0V>»+H>»0

AC+MBR® AC

IR<13:0> ® MAR

IR<13:0> ® PC

Read/Write
Request
0® PC N,
>
PC+1® PC -
Vel
PC ® MAR -
MAR® Memory AddressBus :
Memory DataBus ® MBR =
MBR® Memory Data Bus]
MBR® IR Z
MBR® AC =
>
AC® MBR -
Vel
>
-
)
-
Ve

1R<15:14>

AA

AC<15>

11.2.24]

M apping onto Datapath Control

Specification so far isindependent of bussing strategy
Implied transfers:

Operand Fetch

i IFetch Branch
Memory ¢ l
Address
Bus P
C

Thisis the point-to-point connection scheme

CS150 Newton/Pister 11.2.25

M apping onto Datapath Control

Observe that instruction fetch and operand fetch take place at
different times

Thisimpliesthat IR, PC, and MAR transfers can be implemented
by single bus (Address Bus)

Combine MBR, IR, ALU B, and AC connections (Memory Bus)

Combine ALU, AC, and MBR connections (Result Bus)

Three bus architecture:
AC + MBR® AC implemented in single state

CS150 Newton/Pister 11.2.26

M apping onto Datapath Control

AddressBus Result Bus ,
Memory L Memory
Address Data
Bus M P M Bus
Allcel |r B
R R
A

Memory Bus

AC hastwo inputs, RBUS and MBUS
(Other registers except MBR have single input and output)

Dual ported configuration is more complex

Better idea: reuse existing paths were possible
MBR ® AC transfer implemented by PASS B ALU operation

CS150 Newton/Pister

11.2.27|

M apping onto Datapath Control

Detailed implementation of register transfer operations
More detailed control operations are called microoperations
One register transfer operation = several microoperations

Some operations directly implemented by functiona units:
e.g., ADD, PassB,0 ® PC,PC+1® PC

Some operations require multiple control operations:

e.g., PC® MAR implemented as
PC® ABUSand ABUS® MAR

CS150 Newton/Pister

11.2.28]

M apping onto Datapath Control

Address
Bus
MAR A
< | PC
LD CLR_CNT
T PC ® ABUS
ABUS ® MAR 0® PC PC+1® PC
/ PC implemented by
Load I nput counter with COUNT

and CLEAR inputs
Tri-state Control

CS150 Newton/Pister 11.2.29
M apping onto Datapath Control
Timing of State Changes and Microoperations
| | RES | IF0O | IR
ak || | | L
Rest |
PC getsO
0® PC | '
Deferred til next oo
clock edge PC+1® PC (
Takes place
immediatly ~ PC ® ABUS poon ||
Deferred til next
clockedge Agus® MAR |
MAR latches
ABUS

CS150 Newton/Pister 11.2.30)

M apping onto Datapath Control

Relationship between register transfer and microoperations:

Reqgister Transfer
0® PC

PC+1e PC
PC ® MAR

MAR ® AddressBus
DataBus® MBR
MBR ® Data Bus
MBRe® IR

MBR® AC

CS150 Newton/Pister

Microoperations

0® PC (delayed);

PC + 1® PC (delayed);

PC ® ABUS (immediate),
ABUS® MAR (delayed);

MAR ® AddressBus (immediate);
DataBus® MBR (delayed);

MBR @ Data Bus (immediate);
MBR @ ABUS (immediate),
ABUSe® IR (delayed);

MBR ® MBUS (immediate),
MBUS® ALU B (immediate),
ALU PASS B (immediate),

ALU Result ® RBUS (immediate),
RBUS® AC (delayed);

11.2.31

M apping onto Datapath Control

Relationship between register transfer and microoperations:

Register Transfer
ACe® MBR

AC+MBR® AC

IR<13:0> ® MAR
IR<13:0>® PC
1® Read/Write

0® Read/Write
1® Reguest

Microoperations
AC® RBUS (immediate),

RBUS® MBR (delayed);
AC® ALU A (immediate),
MBR ® MBUS (immediate),
MBUS® ALU B (immediate),
ALU ADD (immediate),

ALU Result ® RBUS (immediate),
RBUS ® AC (delayed);

IR® ABUS (immediate),
ABUS® IR (delayed);

IR® ABUS (immediate),
ABUS® PC (delayed);

Read (immediate);

Write (immediate);

Request (immediate);

Specia microoperations for AC® ALU and ALU Result ® RBUS
not strictly necessary since these connections can be hardwired

CS150 Newton/Pister

11.2.32]

M apping onto Datapath Control

| Memory

\A

Reset Wait

Yy

Read/Write

Request
0® PC

Mem
Addr
Bus

A

Mem
Data
Bus

PC+1® PC

PC ® ABUS

IR® ABUS

ABUS ® MAR

ABUS ® PC

MAR ® Memory Address Bus

Memory DataBus ® MBR

rOx—+H4HZ00

MBR ® Memory Data Bus

MBUS® IR

MBR ® MBUS >

MBUS® ALUB

RBUS ® AC

>

RBUS ® MBR

ALU ADD

ALU PASSB

IR<15:14>

>

AC<15>

CS150 Newton/Pister

I—H4>»T>»—H>»0

Revised microoperation signal flow

5inputs

make sure that Reset and
Wait are synchronized

16 datapath control lines

2 memory control lines

11.2.33]

