Outline

O Last time:
Arithmetic Logic Unit (ALU)
Bandwidth, Latency, Scheduling & Allocation, Pipelining
O Thislecture:
= Introduction to Computer Organization
= Control
= Datapath
= /O Interface
= Bussing Strategies
= Deriving the State Diagram & Datapath

CS150 Newton/Pister 10.2.1

Computer Organization
-

Central Memory

1 Processor
Processing System
Unit
(CPU)
Control
Signals
Control Datapath
Data
Inputs
Instruction Unit Execution Unit
Instruction fetch Functional Units
and interpretation and Registers
FSM

CS150 Newton/Pister 10.2.2

Computer Organization

Example of I nstruction Sequencing
Instruction: Add Rx to Ry and placeresult in Rz

Step 1: Fetch the Add instruction from Memory
to Instruction Reg
Step 2: Decode I nstruction
Instructionin IR isan ADD
Sour ce operands are Rx, Ry
Destination operand isRz
Step 3: Execute I nstruction
MoveRx, RytoALU
Set up AL U to perform ADD function
ADD Rx to Ry
Move ALU result toRz

CS150 Newton/Pister 10.2.3

Structure of a Computer

I nstruction Types

- Data Manipulation
Add, Subtract, etc.

» Data Staging
L oad/Stor e data to/from memory
Register-to-register move

e Control

Conditional/unconditional branches
Subroutine call and return

CS150 Newton/Pister 10.2.4

Control

Elements of the Control Unit (aka Instruction Unit):

Standard FSM things:
State Register
Next State Logic
Output Logic (datapath control signaling)

Plus Additional " Control" Registers:

Instruction Register (IR)
Program Counter (PC)

CS150 Newton/Pister 10.25

Control

Reset
. Initialize
Control State Diagram .
9 Machine
¢ Reset
« Fetch Instruction| __———————\Instr.
Different Sequence
* Decode ~ for Each Instruction
* Execute — | ceai Type
egister-
Branch Store to-Register
Instructions partitioned
into three classes: Branch \
e Branch Taken
¢ Load/St .
ore Housekeeping

¢ Register-to-Register
CS150 Newton/Pister 10.2.6

Datapath

Arithmetic Circuits
constructed in
hierarchical and
iterative fashion

Each bit in datapath
isfunctionally identical

Cin
A!n FA Sum
Bin *
/ Gt
[|
Aiin

Ein

Py
M N

S

Congt

4-bit “
-DI
8-bit / [\ N\
32-bit E |
Datapaths \—LD*C
|
Hierarchical Construction of
CS150 Newton/Pister Full Adder 10.2.7
Datapath
\ 4 l A 4 l A4 l
CO <AL U« Cl CO «—AL U« I;ALU= Cl
—{ RO || " — R0 ||| RO
—{ R1 | — R1|_ —> R1|_
— R2 [[— R2 |7 M R2 [
—{ R3] —{R3 || R3]
1 bit wide 2 bitswide
Bit Slice Concept iterate to build n-bit wide
datapaths
CS150 Newton/Pister 10.2.8

Datapath

ALU Block Diagram

™ T

Cout S
CS150 Newton/Pister 10.2.9
Block Diagram/Register Transfer View
Store Path
Single Accumulator | Load Path v
M achine
Control Flow ——
AC := AC <op> Mem Data Flow —>» Memory
. N bits wide
" single address M words
instructions’ FSM
AC implicit operand
| Opcode\‘
IR
Al
Ar rowed L | nes Instruction Path

represent dataflows

othersare control flows

Memory Address Register

Hold address during memory
accesses

CS150 Newton/Pister

10.2.10

Block Diagram/Register Transfer View
Placement of Data and Instructionsin Memory:
» Data and instructions mixed in memory:
Princeton Architecture

» Data and instructionsin separate memory:
Harvard Architecture

Princeton architecture simpler to implement

Harvard architecture has certain perfor mance advantages:
overlap instruction fetch with operand fetch

We assume the mor e common Princeton ar chitectur e throughout

CS150 Newton/Pister 10.2.11

Block Diagram/Register Transfer View

Tracean instruction: AC := AC + Mem<address>
1. Instruction Fetch:
Move PC to MAR
Initiate a memory read sequence
Move data from memory to IR
2. Instruction Decode:

Op codebitsof IR areinput to control FSM
Rest of IR bits encode the operand address

CS150 Newton/Pister 10.2.12

Block Diagram/Register Transfer View

Trace an instruction: AC := AC + Mem<addr ess>

3. Operand Fetch:
Move operand addressfrom IR to MAR
Initiate a memory read sequence

4. Instruction Execute:
Data available on load path
Movedatato ALU input
Configure ALU to perform ADD operation
Move Sresult to AC

5. Housekeeping:
Increment PC to point at next instruction

CS150 Newton/Pister 10.2.13

Block Diagram/Register Transfer View

Control: Transfer data from oneregister to another
Assert appropriate control signals

Register transfer notation Register to Register moves
Ifetch: PC® MAR; -- move PC to MAR
Memory Read; -- assert Memory READ signal
Memory @ IR; -- load IR from M emory
Instruction Decode: |F IR<op code> = ADD_FROM_MEMORY
THEN
Instruction Execution: |IR<addr>® MAR; -- move operand addr to MAR
Memory Read; -- assert Memory READ signal
Memory ® ALU B; --gateMemory toALU B
AC® ALUA; --gateACtoALU A
Assert Control ALU ADD; --instruct ALU to perform ADD
Signal ALU S® AC; --gateALU result toAC
T PC+1; -- increment PC

CS150 Newton/Pister 10.2.14

Memory Interface
More Realistic Block Diagram:

PC M
IR A
| ssue memory request R
Isitaread or awrite? Request
Memory asks CPU to wait Read/Wite > Memor
Wait i y
LD/ST Data
Instructions
Decouple memory system from Memory Buffer Register
internal processor operation
CS150 Newton/Pister 10.2.15

Memory Interface

No common clock between CPU and memory
Follow asynchronous 4-cycle handshake r equest/wait (ack) protocol

Request

1. Request Asserted

2. Wait Unasserted Read/Write

\

< 1[0 Memor))\

3. Request Unasserted Data From Mémory

4. Wait Asserted Wait

Read Cycle Write Q/cle
Memory cannot make request unless Wait signal is asserted

Hi-to-Lo transition on Wait impliesthat dataisready (read)
or data has been latched by memory (write)

CS150 Newton/Pister 10.2.16

Memory Interface

State Diagram Fragmentsfor Read/Write Cycles

Read Write
Cycle Cycle
MAR ® AddressBus; MAR ® AddressBus;
Wait 1 ® Read/Write; 0 ® Read/Write;
1 ® Request; Wait 1 ® Request;
MBR ® DataBus; MBR ® DataBus;
Wait W_ait
Wait -
0 ® Request; Wait 0 ® Request;
Wait .
Wait
State 1. drive address bus Normal Convention:
assert read request If register transfer op
catch datainto MBR NOT asserted, it need
State 2: unassert request not be mentioned in
hold in state until Wait reasserted state diagram
CS150 Newton/Pister 10.2.17

/O Interface

Memory-Mapped 1/0

I/0O devices sharethe memory address space
Control registers manipulated just like memory word
Read/writeregister toinitiate I/O operation

Polling
Programs periodically checks whether 1/0O has completed

Interrupts

Device signals CPU when operation is complete

Softwar e must take over to handle the data transfersfrom the device
Check for interrupt pending befor e fetching next instruction

Save PC & vector to special memory location for next instruction
Instruction set includesa ™ return from interrupt” instruction

CS150 Newton/Pister 10.2.18

Register-to-Register Communications

* Point-to-point
» Single shared bus
* Multiple special purpose busses

Tradeoffs between datapath/control complexity and
amount of parallelism supported by the hardware
Casestudy:

Four general purposeregistersthat must be ableto exchange
their contents

Swap instruction must be supported:
SWAP(RI, Rj)
Ri® Rj;
Rj ® Ri;

CS150 Newton/Pister

10.2.19

Point-to-Point Connection Scheme

YYY YYY YYY 'YY

S1<1:0>

<

S0<1:0> MUX MUX S2<1:0> MUX S3<1:0> MUX

PR] P [R] ™ Ho3

Four registersinterconnected via 4:1 Mux's and point-to-point connections

» Edge-triggered N bit registers controlled by L Di signals
* N x4:1 MUXes per register, controlled by Si<1:0> signals

CS150 Newton/Pister

10.2.20

Point-to-Point Connections
Example:
Register transfersR1® ROand R2® R3

Register transfer operations:
O0l® S0<1:0>; Enablepath from R1to RO

10® S3<1:0>; Enable path from R2to R3

1le® LDO; Assert load for RO
le® LD3; Assert load for R3
CS150 Newton/Pister 10.2.21

Point-to-Point Connections

When control signals are asserted and when they take place:

L Enter state X:
01 ® S0<1:0>; Multiplexor control signals asserted
10 ® S3<1:0>; R1 outputsarrive at RO inputs
1® LDO; R2 outputsarrive at R3 inputs
1® LD3;
LD signals asserted

Do not take effect until next rising clock

On entering state Y:
LD signals are synchronous and take
effect at the sametime asthe state
transition!

M oore M achine
State Diagram

CS150 Newton/Pister 10.2.22

Bussing Schemes

I mplementation of Register SWAP operation
SWAP(RL1, R2):

%g 2%:182 ___— Establish connection paths

ig ::B% _———— Swap takesplace at next state
, transition

Point-to-Point Scheme Plusses and Minuses:

+ transfer anew valueinto each of the
four registersat sametime

+ register swap implemented in asingle
control state

- 5gatestoimplement 4:1 MUX
32 bit wide datapath implies32 x 5 x 4 registers
= 640 gates!
very expensive implementation

CS150 Newton/Pister 10.2.23

Bussing Strategies

Single Bus I nterconnection
‘L YYY

S<1:0> —>»| MUX

Single Bus

i S e P s

» per register MUX block replaced by single block
» 25% hardware cost of previous alternative
 shared set of pathwaysiscalled aBUS

Single bus becomes a critical resource --
used by only onetransfer at atime

CS150 Newton/Pister 10.2.24

Bussing Strategies
Single Bus I nterconnection
Example R1® ROand R2® R3

State X: (R1® RO)
0l® S<1:0>;
1® LDOG;

StateY: (R2® R3)
10® S<1:0>;
l® LD3;

Datapath no longer supportstwo simultaneoustransfers!
Thustwo control statesare required to perform thetransfers

CS150 Newton/Pister

10.2.25

Bussing Strategies

Single Bus I nterconnection

SWAP Operation

A special TEMP register must beintroduced (" Register 4")
MUX's become5:1 rather than 4:1

State X: (R1e R4)
001 ® S<2:0>;

1® LD4;

State Y: (R2® R1)
010 ® S<2:0>;

1l® LD1;

State Z: (R4® R2)
100 ® S<2:0>

1l® LD2;

CS150 Newton/Pister

Three statesarerequired rather than one!

plusextraregister and wider mux

M ore control states because this datapath
supportslessparalle activity

Engineering choices made based on how
frequently multipletransferstake place at
the sametime

10.2.26

Bussing Strategies

Alternatives to Multiplexors
Tri-state buffersas an inter connection scheme

Only oneregister's contents gated to shared bus at atime

CS150 Newton/Pister 10.2.27

Bussing Strategies
Multiple Busses
Real datapaths are a compromise between the two extremes

&

Register Transfer Memory
Diagram Address
Bus

Memory
Data Bus

Single Bus Design < >

a0

Register transfer operations:

PC ® BUS BUS® PC AC® ALUA
IR @ BUS BUS® IR (" hardwired")
AC® BUS BUS® AC
MBR ® BUS BUS® MBR
ALUResult® BUS ~ BUS® ALUB

BUS® MAR

CS150 Newton/Pister 10.2.28

Bussing Strategies
Multiple Busses
Example Register Transfer for Single Bus Design
Instruction Interpretation for " ADD Mem[X]"
Fetch Operand IR<operand address> ® BUS;
Cyclel: BUS® MAR,
Cycle2: Memory Read,;
Databus® MBR;
Perform ADD MBR ® BUS;
Cycle3: BUS® ALU B; .
AC® ALUA; Requireslatch
ADD: 7 for ALU Result
Write Result ALU Result ® BUS;
Cycle4: BUS® AC;
CS150 Newton/Pister 10.2.29
Bussing Strategies
Multiple Busses _
Three Bus Design -- Supports more parallelism
Address Bus Result Bus
Memory ¢
Address Memory
BuS P | Data Bus
c| |R B
R
A
Memory Bus
Single bus replaced by three busses:
Memory Bus (MBUS)
Result Bus (RBUS)
Address Bus (ABUYS)
10.2.30

CS150 Newton/Pister

Multple Busses Bussing Strategies

Instruction Interpretation for " ADD Mem[X]"

Fetch Operand

Cycle 1: IR<operand address>® ABUS;
ABUS® MAR;

Cycle2 Memory Read,;

Perform ADD Databus® MBR;

Cyde3: MBR ® MBUS: Implemented
MBUS® ALU B; in three cycles
AC® ALUA: rather than four
ADD;

Write Result

ALU Result ® RBUS;
RBUS® AC;

Advantage of separate ABUS:
overlap PC ® MAR with instruction execution

CS150 Newton/Pister 10.2.31

