
10.2.1CS150 Newton/Pister

Outline

m Last time:
Arithmetic Logic Unit (ALU)

     Bandwidth, Latency, Scheduling & Allocation, Pipelining

m This lecture:
Ü Introduction to Computer Organization
Ü Control
Ü Datapath
Ü I/O Interface
Ü Bussing Strategies
Ü Deriving the State Diagram & Datapath

10.2.2CS150 Newton/Pister

Computer Organization

Central
Processing

Unit
(CPU)

Execution UnitInstruction Unit

Functional Units
and Registers

Instruction fetch
and interpretation
FSM

Processor Memory 
System

Control Datapath

Address

Read/Write

Data

Control 
Signals

Data  
Inputs



10.2.3CS150 Newton/Pister

Computer Organization
Example of Instruction Sequencing
Instruction: Add Rx to Ry and place result in Rz

      Step 1: Fetch the Add instruction from Memory
             to Instruction Reg
      Step 2: Decode Instruction
                   Instruction in IR is an ADD
                   Source operands are Rx, Ry
                   Destination operand is Rz
      Step 3: Execute Instruction
                   Move Rx, Ry to ALU
                   Set up ALU to perform ADD function
                   ADD Rx to Ry
                   Move ALU result to Rz

10.2.4CS150 Newton/Pister

Structure of a Computer

Instruction Types

•  Data Manipulation
         Add, Subtract, etc.

•  Data Staging
         Load/Store data to/from memory
         Register-to-register move

•  Control
         Conditional/unconditional branches
         Subroutine call and return



10.2.5CS150 Newton/Pister

Control

Elements of the Control Unit (aka Instruction Unit):

Standard FSM things:
      State Register
      Next State Logic
      Output Logic (datapath control signaling)

Plus Additional "Control" Registers:
      Instruction Register (IR)
      Program Counter (PC)

10.2.6CS150 Newton/Pister

Reset

Initialize 
Machine

Different Sequence 
for Each Instruction 

Type

Fetch 
Instr.

Branch
Load/ 
Store

Register- 
to-Register

XEQ 
Instr.

Incr. 
PC

0

Branch 
Not Taken

Branch  
Taken

Control

Control State Diagram

•  Reset

•  Fetch Instruction

•  Decode

•  Execute

Instructions partitioned
into three classes:
  •  Branch
  •  Load/Store
  •  Register-to-Register Housekeeping



10.2.7CS150 Newton/Pister

Arithmetic Circuits
constructed in
hierarchical and
iterative fashion

Each bit in datapath
is functionally identical

4-bit
8-bit
16-bit
32-bit
Datapaths

Hierarchical Construction of 
Full Adder

Datapath

10.2.8CS150 Newton/Pister

Datapath

ALU

R0

R1

R2

R3

AC

Bit Slice Concept

1 bit wide

CICO ALU

R0

R1

R2

R3

AC

CO ALU

R0

R1

R2

R3

AC

CI

2 bits wide

iterate to build n-bit wide
datapaths



10.2.9CS150 Newton/Pister

Datapath
ALU Block Diagram

32 32

A B

ALU

Operation 32

Cout S

10.2.10CS150 Newton/Pister

Block Diagram/Register Transfer View

Single Accumulator
Machine

AC := AC <op> Mem

"single address 
instructions"

AC implicit operand

Memory Address Register
Hold address during memory

accesses

Arrowed Lines
represent dataflows

others are control flows

Store Path

AC
Load Path

A B

ALU

Memory 
N bits wide 

M words

MAR
S

PC

FSM

IR

Instruction Path

Memory 
Address

Opcode

Control Flow 
Data Flow



10.2.11CS150 Newton/Pister

Block Diagram/Register Transfer View
Placement of Data and Instructions in Memory:
   •  Data and instructions mixed in memory:

Princeton Architecture
   •  Data and instructions in separate memory:

Harvard Architecture

Princeton architecture simpler to implement

Harvard architecture has certain performance advantages:
      overlap instruction fetch with operand fetch

We assume the more common Princeton architecture throughout

10.2.12CS150 Newton/Pister

Block Diagram/Register Transfer View

Trace an instruction: AC := AC + Mem<address>

1.  Instruction Fetch:

      Move PC to MAR
      Initiate a memory read sequence
      Move data from memory to IR

2.  Instruction Decode:

     Op code bits of IR are input to control FSM
     Rest of IR bits encode the operand address



10.2.13CS150 Newton/Pister

Block Diagram/Register Transfer View

Trace an instruction: AC := AC + Mem<address>

3.  Operand Fetch:
      Move operand address from IR to MAR
      Initiate a memory read sequence

4.  Instruction Execute:
      Data available on load path
      Move data to ALU input 
      Configure ALU to perform ADD operation
      Move S result to AC

5.  Housekeeping:
      Increment PC to point at next instruction

10.2.14CS150 Newton/Pister

Block Diagram/Register Transfer View
Control: Transfer data from one register to another
               Assert appropriate control signals

Register transfer notation

Ifetch: PC →  MAR;
Memory Read;
Memory →  IR;

-- move PC to MAR
-- assert Memory READ signal
-- load IR from Memory

Instruction Decode: IF IR<op code> = ADD_FROM_MEMORY
THEN

Instruction Execution: IR<addr> →  MAR;
Memory Read;
Memory →  ALU B;
AC →  ALU A;
ALU ADD;
ALU S →  AC;
PC+1;

-- move operand addr to MAR
-- assert Memory READ signal
-- gate Memory to ALU B
-- gate AC to ALU A
-- instruct ALU to perform ADD
-- gate ALU result to AC
-- increment PC

Register to Register moves

Assert Control
Signal



10.2.15CS150 Newton/Pister

Memory Interface
More Realistic Block Diagram:

Decouple memory system from
internal processor operation

Memory Buffer Register

Issue memory request
Is it a read or a write?
Memory asks CPU to wait

PC

IR

M 
A 
R

Memory

M 
B 
R

Request

Read/Write
Wait

LD/ST Data

Instructions

10.2.16CS150 Newton/Pister

Memory Interface
No common clock between CPU and memory

Follow asynchronous 4-cycle handshake request/wait (ack) protocol

Read Cycle Write Cycle

Memory cannot make request unless Wait signal is asserted

Hi-to-Lo transition on Wait implies that data is ready (read)
      or data has been latched by memory (write)

1. Request Asserted

2. Wait Unasserted

3. Request Unasserted

4. Wait Asserted

Request

Read/Write

Data

Wait

To MemoryFrom Memory



10.2.17CS150 Newton/Pister

Memory Interface
State Diagram Fragments for Read/Write Cycles

State 1: drive address bus
              assert read request
              catch data into MBR
State 2: unassert request
              hold in state until Wait reasserted

Normal Convention:
If register transfer op
NOT asserted, it need
not be mentioned in

state diagram

MAR →  AddressBus; 
0 →  Read/Write; 
1 →  Request; 
MBR →  DataBus;

Wait

Wait

Wait

0 →  Request;

Wait

Wait

Wait

Wait 0 →  Request;

Read 
Cycle

Write 
Cycle

Wait

MAR →  AddressBus; 
1 →  Read/Write; 
1 →  Request; 
MBR →  DataBus;

10.2.18CS150 Newton/Pister

I/O Interface

Memory-Mapped I/O
I/O devices share the memory address space
Control registers manipulated just like memory word
Read/write register to initiate I/O operation

Polling
Programs periodically checks whether I/O has completed

Interrupts
Device signals CPU when operation is complete
Software must take over to handle the data transfers from the device
Check for interrupt pending before fetching next instruction
Save PC & vector to special memory location for next instruction
Instruction set includes a "return from interrupt" instruction 



10.2.19CS150 Newton/Pister

Register-to-Register Communications
•  Point-to-point
•  Single shared bus
•  Multiple special purpose busses

Tradeoffs between datapath/control complexity and
      amount of parallelism supported by the hardware

Case study:
Four general purpose registers that must be able to exchange
their contents

Swap instruction must be supported:
SWAP(Ri, Rj)
      Ri →  Rj;
      Rj →  Ri;

10.2.20CS150 Newton/Pister

Point-to-Point Connection Scheme

Four registers interconnected via 4:1 Mux's and point-to-point connections

•  Edge-triggered N bit registers controlled by LDi signals

•  N x 4:1 MUXes per register, controlled by Si<1:0> signals

S0<1:0>
MUX

S1<1:0>
MUX

S2<1:0>
MUX

S3<1:0>
MUX

LD1 R1LD0 R0 LD2
R2 LD3 R3



10.2.21CS150 Newton/Pister

Point-to-Point Connections

Example:
Register transfers R1 →  R0 and R2 →  R3

Register transfer operations:
01 →  S0<1:0>;

10 →  S3<1:0>;

1 →  LD0;

1 →  LD3;

Enable path from R1 to R0

Enable path from R2 to R3

Assert load for R0

Assert load for R3

10.2.22CS150 Newton/Pister

Point-to-Point Connections
When control signals are asserted and when they take place:

Moore Machine
State Diagram

Enter state X:
   Multiplexor control signals asserted
   R1 outputs arrive at R0 inputs
   R2 outputs arrive at R3 inputs

   LD signals asserted
   Do not take effect until next rising clock

On entering state Y:
   LD signals are synchronous and take
   effect at the same time as the state
   transition!

X

Y

01 →  S0<1:0>; 
10 →  S3<1:0>; 
1 →  LD0; 
1 →  LD3;



10.2.23CS150 Newton/Pister

Bussing Schemes
Implementation of Register SWAP operation

SWAP(R1, R2):
01 →  S2<1:0>;
10 →  S1<1:0>;
1 →  LD2;
1 →  LD1;

Establish connection paths

Swap takes place at next state
transition

Point-to-Point Scheme Plusses and Minuses:
+  transfer a new value into each of the 
    four registers at same time
+  register swap implemented in a single 
    control state

-  5 gates to implement 4:1 MUX
   32 bit wide datapath implies 32 x 5 x 4 registers 
    = 640 gates!
   very expensive implementation

10.2.24CS150 Newton/Pister

Bussing Strategies
Single Bus Interconnection

•  per register MUX block replaced by single block
•  25% hardware cost of previous alternative
•  shared set of pathways is called a BUS

Single bus becomes a critical resource -- 
      used by only one transfer at a time

S<1:0> MUX

LD0 R0 LD1 R1 LD2 R2 LD3 R3

Single Bus



10.2.25CS150 Newton/Pister

Bussing Strategies
Single Bus Interconnection

Example: R1 →  R0 and R2 →  R3

State X: (R1 →  R0)
01 →  S<1:0>;
1 →  LD0;

(R2 →  R3)
10 →  S<1:0>;
1 →  LD3;

State Y:

Datapath no longer supports two simultaneous transfers!
Thus two control states are required to perform the transfers

10.2.26CS150 Newton/Pister

Bussing Strategies
Single Bus Interconnection
SWAP Operation

A special TEMP register must be introduced ("Register 4")
MUX's become 5:1 rather than 4:1

State X:

State Y:

State Z:

(R1 →  R4)
001 →  S<2:0>;
1 →  LD4;

(R2 →  R1)
010 →  S<2:0>;
1 →  LD1;

(R4 →  R2)
100 →  S<2:0>
1 →  LD2;

Three states are required rather than one!

plus extra register and wider mux

More control states because this datapath 
supports less parallel activity

More control states because this datapath 
supports less parallel activity

Engineering choices made based on how
frequently multiple transfers take place at

the same time



10.2.27CS150 Newton/Pister

Bussing Strategies
Alternatives to Multiplexors
Tri-state buffers as an interconnection scheme

Only one register's contents gated to shared bus at a time

LD0 RO LD1 R1 LD2 R2 LD3 R3

S<1:0> D 
E 
C

10.2.28CS150 Newton/Pister

Bussing Strategies
Multiple Busses
Real datapaths are a compromise between the two extremes

Single Bus Design

Register Transfer
Diagram

Register transfer operations:
PC →  BUS
IR →  BUS
AC →  BUS
MBR →  BUS
ALU Result →  BUS

BUS →  PC
BUS →  IR
BUS →  AC
BUS →  MBR
BUS →  ALU B
BUS →  MAR

AC →  ALU A
("hardwired")

Memory 
Address 

Bus
Memory 

Data BusM 
A 
R

P 
C

I 
R

A 
C

A

B

M 
B 
R

BUS



10.2.29CS150 Newton/Pister

Bussing Strategies
Multiple Busses

Example Register Transfer for Single Bus Design

IR<operand address> →  BUS;
BUS →  MAR;

Memory Read;
Databus →  MBR;

MBR →  BUS;
BUS →  ALU B;
AC →  ALU A;
ADD;

ALU Result →  BUS;
BUS →  AC;

Fetch Operand
Cycle 1:

Cycle 2:

Perform ADD
Cycle 3:

Write Result
Cycle 4:

Instruction Interpretation for "ADD Mem[X]"

Requires latch
for ALU Result

10.2.30CS150 Newton/Pister

Bussing Strategies
Multiple Busses

Three Bus Design -- Supports more parallelism

Single bus replaced by three busses:
Memory Bus (MBUS)
Result Bus (RBUS)
Address Bus (ABUS)

Address Bus

M 
A 
R

P 
C

I 
R

Memory 
Address 

Bus A 
C

A

B

M 
B 
R

Result Bus

Memory Bus

Memory 
Data Bus



10.2.31CS150 Newton/Pister

Bussing Strategies
Multiple Busses

Instruction Interpretation for "ADD Mem[X]"

IR<operand address> →  ABUS;
ABUS →  MAR;

Memory Read;
Databus →  MBR;

MBR →  MBUS;
MBUS →  ALU B;
AC →  ALU A;
ADD;

ALU Result →  RBUS;
RBUS →  AC;

Fetch Operand
Cycle 1:

Cycle 2:

Perform ADD
Cycle 3:

Write Result

Implemented
in three cycles

rather than four

Advantage of separate ABUS: 
      overlap PC →  MAR with instruction execution


