

Computer Organization	
Example of Instruction Sequencing	
Instruction: Add Rx to Ry and place result in Rz	
Step 1: Fetch the Add instruction from Memory to Instruction Reg Step 2: Decode Instruction Instruction in IR is an ADD Source operands are Rx, Ry Destination operand is Rz Step 3: Execute Instruction Move Rx, Ry to ALU Set up ALU to perform ADD function ADD Rx to Ry Move ALU result to Rz	
CS150 Newton/Pister	10.2.3

Structure of a Computer	
Instruction Types	
 Data Manipulation Add, Subtract, etc. 	
 Data Staging Load/Store data to/from memory Register-to-register move 	
• Control Conditional/unconditional branches Subroutine call and return	
C\$150 Newton/Pister	10.2.4

Control	
Elements of the Control Unit (aka Instruction Unit):	
Standard FSM things: State Register Next State Logic Output Logic (datapath control signaling)	
Plus Additional "Control" Registers: Instruction Register (IR) Program Counter (PC)	
CS150 Newton/Pister	10.2.5

Single Bus Interconnection

Example: R1
 R0 and R2
 R3

State X: (R1 ® R0) 01 ® S<1:0>; 1 ® LD0;

State Y: (R2 @ R3) 10 @ S<1:0>; 1 @ LD3;

Datapath no longer supports two simultaneous transfers! Thus two control states are required to perform the transfers

10.2.25

CS150 Newton/Pister

nterconnection htion IP register must e 5:1 rather that	be introduced ("Register 4") n 4:1
IP register must e 5:1 rather that	be introduced ("Register 4") n 4:1
D1 @ D4)	
$01 \otimes S<2:0>;$	Three states are required rather than one!
® LD4;	plus extra register and wider mux
R2 ® R1) 10 ® S<2:0>;	More control states because this datapath supports less parallel activity
® LD1;	Engineering choices made based on how
R4 ® R2) 00 ® S<2:0> ® LD2;	frequently multiple transfers take place at the same time
	10.2.26
)1 © S<2:0>; © LD4; (0 © S<2:0>; © LD1; (4 © R2) (0 © S<2:0> © LD2;

B <i>Multiple Busses</i> Instruction Interpret	ussing Strategies	
<i>Fetch Operand</i> Cycle 1:	IR <operand address="">® ABUS; ABUS ® MAR;</operand>	
Cycle 2: <i>Perform ADD</i> Cycle 3:	Memory Read; Databus ® MBR; MBR ® MBUS; MBUS ® ALLIB:	Implemented in three cycles
Write Result	AC @ ALU A; ADD; ALU Result @ RBUS; RBUS @ AC;	rather than four
Advantage of separ overlap PC ® M	rate ABUS: MAR with instruction execution	
CS150 Newton/Pister		10.2.31