University of California at Berkeley
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

EECS150
Spring 2000
J. Wawrzynek
E. Caspi

Quiz \#9 - Solution
(a) The 1-bit subtractor computes: $d=x-y-b_{i n}$, passing a borrow $b_{\text {out }}$ to the right. The truth table for d and $b_{\text {out }}$ follows:

x	y	$\mathrm{b}_{\text {in }}$	d	$\mathrm{b}_{\text {out }}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

The difference output d is identical to the sum output of a full adder. It is expressed most simply using XORs: $d=x \oplus y \oplus b_{i n}$.

The borrow output $b_{\text {out }}$ is not so familiar. We derive its reduced expression using a Karnaugh map: $b_{\text {out }}=x$ 'bin $+x$ ' $y+y b_{\text {in }}$.

(b) A ripple subtractor can be formed by cascading several 1-bit subtractors with a borrow-chain. This construction is similar to a ripple adder with a carry-chain.

