
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS150 J. Wawrzynek
Spring 2000 E. Caspi

Quiz #3 – Solution

There are many possible solutions – we present 3 plausible ones. There are two
preliminary points which are important in all solutions:

• s=1. Since this is a combinational circuit, not a sequential one, we do not need the

flip flop. In all cases, the output multiplexor should pass on the signal which
bypasses the flip flop (i.e. s=1).

• Decompose the 8-input OR. A single CLB cannot possibly implement the 8-input
OR which generates y. You must decompose that OR gate. This is easy, since OR is
associative: a+b+c = (a+b)+c = a+(b+c). That means a wide OR can be
implemented by a sequence of smaller ORs as well as by a tree (as in Homework #2,
problem 2, which did the same for a wide XOR). To minimize total CLB usage, the
particular OR decomposition you choose should depend on the partitioning of the rest
of the circuit.

Recall that this is our CLB:

The easiest way to use the CLB is as a 4-LUT. We compose the 4-LUT from the pair of
3-LUTs by feeding the same 3 inputs into {b,c,d} as into {e,f,g} and by using a for the
fourth input. The first 3-LUT implements the 4-LUT function assuming a=0 while the
second assumes a=1. This technique is demonstrated in Homework #3, problem 3.

3-LUT

3-LUT
FF

(configuration bit)

0

1

0

1

Configurable Logic Block
a

b
c
d

e
f

g

h

s

A very simple partitioning can be done using 11 4-LUTs. Each of the 8 AND-AND
terms uses one CLB, and the OR is partitioned into a tree of 3 CLBs.

 Implementation in 11 CLBs

(4-LUT configuration).

a b c d e f g s h

x3 x0 x1 x2 x0 x1 x2 1 t9

x4 x0 x1 x2 x0 x1 x2 1 t10

x5 x0 x1 x2 x0 x1 x2 1 t11

x6 x0 x1 x2 x0 x1 x2 1 t12

x7 x0 x1 x2 x0 x1 x2 1 t13

x8 x0 x1 x2 x0 x1 x2 1 t14

x9 x0 x1 x2 x0 x1 x2 1 t15

x10 x0 x1 x2 x0 x1 x2 1 t16

t12 t9 t10 t11 t9 t10 t11 1 w0

t16 t13 t14 t15 t13 t14 t15 1 w1

0 w0 w1 - - - - 1 y

x 0 x 1 x 2

x 3

x 4

x 5

x 6

x 7

x 8

x 9

x 1 0

y

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

t 9

t 1 0

t 1 1

t 1 2

t 1 3

t 1 4

t 1 5

t 1 6

w0

w1

The following partition in 5 CLBs is due to Drew Pertula. The 8 AND-AND terms can
be grouped into 4 pairs, where the difference between each pair is the inversion of the x2
input. This guarantees that, in any such pair, one AND-AND term is forced to zero.
Since the AND-AND terms are subsequently OR-ed, the value of x2 effectively selects
which among each pair of AND-AND terms will pass to the output. Now we can pack
each pair of OR-ed AND-AND terms into a single CLB – each AND-AND (now without
x2 as an input) gets a 3-LUT, and x2 controls the multiplexer to select one of them. This
requires 4 CLBs (2 AND-ANDs in each), and one additional CLB to OR their outputs
(using a 4-LUT configuration). Total: 5 CLBs.

 Implementation in 5 CLBs.

a b c d e f g s h

x2 x0 x1 x3 x0 x1 x4 1 w0

x2 x0 x1 x5 x0 x1 x6 1 w1

x2 x0 x1 x7 x0 x1 x8 1 w2

x2 x0 x1 x9 x0 x1 x10 1 w3

w3 w0 w1 w2 w0 w1 w2 1 y

x 0 x 1 x 2

x 3

x 4

x 5

x 6

x 7

x 8

x 9

x 1 0

y

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

t 9

t 1 0

t 1 1

t 1 2

t 1 3

t 1 4

t 1 5

t 1 6

w0

w1

w2

w3

We can do one better – 3 CLBs. You must first realize that the circuit is an 8-to-1
multiplexor. It chooses one of {x3,…,x10} according to the select bus {x2,x1,x0}. The
first column of ANDs implements a decoder, converting the binary number {x2,x1,x0}
into a one-hot representation {t1,…,t8} – only one of {t1,…,t8} will be 1, the rest 0. The
second column masks out the unselected inputs from {x3,…,x10} by AND-ing them with
0 – only one of {t9,…,t16} will actually copy an x input, the rest will be 0. The final OR
simply passes-on whichever result was selected.

An 8-to-1 multiplexor can be implemented by a tree of 2-to-1 multiplexors. A 2-to-1
multiplexor fits in a 3-LUT. A CLB combines 2 2-to-1 muxes into a 4-to-1 mux. A pair
of such CLBs fed through a 2-to-1 multiplexor in a third CLB forms an 8-to-1 mux.

 Implementation in 3 CLBs.

a b c d e f g s h

x1 x3 x4 x2 x5 x6 x2 1 t4

x1 x7 x8 x2 x9 x10 x2 1 t5

0 t4 t5 x0 - - - 1 y

x3
x4

x5
x6

x7
x8

x9
x10

x2 x1 x0

y

t0

t1

t2

t3

t4

t5

