University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

EECS150 J. Wawrzynek Spring 2000 E.Caspi

Quiz #12 - Solution

The counter FSM will represent the gray-code directly in 3 state bits. The next-state function will be the "next gray-code" function, and the counter output will be the state registers.

State	Transition	Diagram

-						
	State			Next State		
	S_2	S_1	S_0	NS_2	NS_1	NS_0
	0	0	0	0	0	1
	0	0	1	0	1	1
	0	1	0	1	1	0
	0	1	1	0	1	0
	1	0	0	0	0	0
	1	0	1	1	0	0
	1	1	0	1	1	1
	1	1	1	1	0	1

State Transition Table

$$NS_0 = S'_2S'_1 + S_2S_1 = (S_2 \oplus S_1)'$$

$$NS_1 = S'_2S_0 + S_1S'_0$$

$$NS_2 = S_2S_0 + S_1S'_0$$

Karnaugh Maps for Next State

Reduced Logic Eqns