
University of California at Berkeley 
College of Engineering 

Department of Electrical Engineering and Computer Sciences 
 

EECS150        J. Wawrzynek 
Spring 2000        E. Caspi 
 

Project Checkpoint 7:  Velocity and Loudness 
 
We will use velocity information from a MIDI note-on command to control the perceived 
loudness of a sound.  In practice, we must scale the corresponding physical quantity, the 
waveform’s amplitude.  To scale the amplitude of a waveform we simply scale each 
individual sample before sending it to the DAC.   
 
The relationship between signal amplitude and the perceived loudness of a sound is 
complex.  Fortunately, the ear is far less sensitive to amplitude changes than to other 
musical qualities of a sound such as pitch.  Thanks to this insensitivity we can use any of 
several approximations for controlling the loudness of a sound without detrimental 
effects.  Perceived loudness is proportional to signal amplitude, but it is not directly 
proportional.  Specifically, to increase the loudness of a sound by a factor of 2 we need to 
increase its amplitude by a factor of 2.8.  Likewise, to decrease the loudness of a sound 
by a factor of 2 we must decrease its amplitude by a factor of 2.8.  This relationship is 
expressed by the formula: 
 

AMP = (2.8)log
2
LOUDNESS 

 
Using this formula, our synthesizer can convert a desired loudness value (taken directly 
from velocity) into an amplitude scaling factor.  The synthesizer must multiply the output 
samples by the scaling factor AMP to obtain the desired amplitude.  The samples stored 
in the EPROM templates are all at maximum amplitude.  These sample values will thus 
be scaled on their way to the DAC by a factor:  0=AMP=1. 
 
Described below are two schemes for scaling the amplitude of the waveform that will 
give satisfactory results.  Consider these schemes and implement one of them as part of 
your synthesizer. 
 
1. Table of Multipliers. 

Approximate the amplitude scaling function using a table-lookup operation.  To be 
perfectly accurate, the table would be indexed by velocity (a 7-bit number) and would 
contain 128 entries for all possible velocities/amplitudes.  A table of such size is 
probably overkill for this application.  Ignoring some low-order bits of velocity 
allows the table to be smaller, at the cost of lower accuracy.  A table of 16 entries 
(indexed by the 4 most-significant bits of velocity) will give satisfactory results.  The 
width of the table determines the accuracy of the approximation of the above 
function.  Again, 4-bits is sufficient.  In this scheme you will need a 16x4 ROM to 
store the table, as well as a multiplier circuit that takes a 4-bit multiplier (positive 



only) and a 16-bit multiplicand (2's complement).  This multiplier circuit is slightly 
different from the one we discussed in lecture, because all the values stored in the 
table are less than 1.  The binary point is assumed to be just to the left of the MSB.  
This modification is simple.  Try a few cases by hand, and you will see. 
 

2. Table of Shift Amounts. 
We can make a further approximation to the amplitude scaling function by using a 
shifter instead of a multiplier circuit.  A multiplication by scaling factor 0=AMP=1 is 
approximated by a right-shift. 

 
Below are listed some table values (4-bits each) that you can use for the above schemes.  
If you do not like the results obtained with the following numbers, you may change them 
as you like.  The project spec requires that velocity scaling be implemented with a lookup 
table, but the table contents are up to you. 
 
 

ROM Address Scheme 1: 
Multiplier 

Scheme 2: 
Shift Amount 

0 1 6 
1 1 4 
2 1 3 
3 2 3 
4 3 2 
5 3 2 
6 4 1 
7 5 1 
8 6 1 
9 7 1 
10 9 0 
11 10 0 
12 11 0 
13 12 0 
14 14 0 
15 15 0 

 
 


