University of California at Berkeley
College of Engineering
Department of Electrical Engineering and Computer Sciences
Computer Science Division

CS 150 J. Wawrzynek
Spring 2000 Project Info.

Final Project Specification
MIDI Sound Synthesizer

1 Introduction

For the final project you are required to use your FPGA board to build a “box” that takes a
MIDI signal as input and generates a audio waveform as output. Figure 1 shows a high level
view of the synthesizer that you will build. MIDI is an acronym for Musical Instrument
Digital Interface, and a MIDI signal is a bit-serial stream of bytes. The audio waveform is a
mono (as opposed to stereo) signal. It will be strong enough to drive headphones or small
speakers. The MIDI synthesizer is monophonic, meaning that it will translate MIDI signals
into sound not more than one note at a time, and single channel, meaning that it will produce
the voice of only one instrument. The audio waveforms are generated using a technique called
waveform synthesis; waveforms from actual musical instruments are stored in ROM and used
to generate sound in response to MIDI commands. The sound waveforms are stored and
played-back using 16-bit data samples. Output sampling rate is 31.25KHz.

MIDI In Opto- §§|

Isolator

Amplifier
IXI—{ DAC

FPGA

DATA Music

Wavetable =
ROM

ADDRESS

4@? EFI—— Oscillator

Figure 1: High-level view of the MIDI Synthesizer.

Our project is a simplified version of commercial synthesizers. For comparison, a medium
grade commercial sound box has stereo output, is polyphonic, and is capable of generating 30
notes simultaneously. Note pitch can be varied continuously, and the voices include numerous

digital filters for adding special effects to the sound output. Such a system would costs around

$500.

1.1 Sound and Music Theory

Sound is air vibrating at an audible frequency, typically 20Hz — 20KHz for an adult human.
The amount of displacement can be sampled and recorded as a sequence of magnitudes over
time, and reproduced by speakers or headphones.

Our hearing is quite complex in the way we perceive musical tones. Two of the most
important characteristics of a musical tone is its loudness and its pitch. To a first
approximation human hearing is logarithmic in perceiving both loudness and pitch. In the
case of loudness, this means that a we perceive the loudness as being proportional to the
logarithm of the sound wave amplitude.

In the case of pitch, the human auditory system is very keen at detecting the logarithmic
relationships between frequency, and “musical” pitch intervals. The simplest interval to detect
is the octave, where the higher pitch has double the frequency of the lower pitch. Given those
two frequencies, it is possible to subdivide the interval (which is the multiple 2) into twelve
parts, producing eleven semi-tones in between. These twelve semi-tones form the chromatic
scale of the traditional western twelve-tone scale.

These twelve intervals form a geometric series. As we move from one up to the next we can
determine its frequency by multiplying by /2. After 12 such multiplications we will have
doubled the frequency and reached the octave. Most people can detect a pitch difference
much smaller than these 12 divisions, in fact as small as a few hundredths of a semi-tone. In
musical terms a centis 1/100 of a semi-tone. To increase the pitch of a note by one cent,
multiply its frequency by *%/2.

The note called middle C has a frequency of 261.63KHz. The MIDI encoding for that note is
key 60. The note called high C, which is an octave higher, has a double the
frequency—>523.25KHz, and it has a MIDI encoding of 72. Others tones can be produced by
multiplying and dividing the frequency by factors of /2. For example, MIDI note number 61
has a frequency of 261.63kHzx /2.

There is one more important aspect to a musical sound, called timbre. Whereas pitch is
indication of how often a sound wave repeats, and loudness is the way we perceive the
amplitude of a sound, timbre is a perception of the shape of the sound wave. Sometimes the
timbre of a musical tone is called its tone quality or color. Different musical instruments have
different, and readily identifiable, timbres. Like our perception of other characteristics of a
musical tone, timbre is complex, but it is deeply related to the way a musical note starts, the
shape the waveform takes as it repeats itself, and how it dies out.

For many musical instruments, a simple model can be used to describe the shape of the
waveform. The waveform can be split into three parts: an attack, a sustain, and a release.
The attack is the most interesting part of a musical sound, corresponding to when a note is
first played. It typically lasts for no more than 300ms, and during this time, the waveform
may be very irregular. Most of the rest of the musical sound is very repetitive, and it is called
the sustain. In the sustain section, not much would be missing to the ear if just one cycle
were played over and over again for the duration of the rest of the note. At the end of the

Template

Pointers
| ——— Time
| _—
Attack
= | OAD:
End of Attack
Sustain
- ¢ COMPARE:
End of Sustain
Release
< COMPARE:

End of Release

Figure 2: Note Playing Process.

note, there may also be irregularities in the waveform, and the release consists of the dying
away of the sound. The release is typically shorter than 100ms.

This simple model matches some musical instrument better than others. Notes from flutes and
other woodwind instruments and bowed sounds such as from the violin family, fit nicely into
this model. However, sounds from instruments that are struck, such as a marimba or even a
piano don’t really have a sustain part to their notes. In these cases we could simply omit the
sustain part of the model, or probably more simply represent the entire note as an attack only.

1.2 Sampling and Storing

A 512KB EPROM will be used to store the sound information. At a sample rate of 31.25KHz,
and at 2 bytes per sample, the EPROM can store roughly 8 seconds of raw sound. However, it
must be capable of reproducing notes of maybe 100 different pitches at varying durations.

The simplest way of getting arbitrary duration is to store an attack, a short section of the
sustain, and a release in a note template. Then, to generate a note, the synthesizer will play
the attack and continue playing into the sustain. While the note is held, it will continue to
play the sustain part by looping. When the key is released, to signal the end of the note, the
synthesizer will continue playing the sustain to the end of the current loop iteration and then
play the release portion of the stored note. This process for playing a note is illustrated in
figure 2.

One way of generating an arbitrary pitch is to store just one note template of an instrument

at a known pitch, and varying the playback frequency. Early inexpensive synthesizers varied
the play back frequency of a note by adjusting the sampling frequency. This creates problems
in the system design and will not be used here. Instead we will output all notes with a
constant sampling frequency and will vary the stride with which we step through the samples
in the template. For example, if we stored the note middle C (MIDI key 60) sampled at a rate
of 31.25KHz, playing the note back by taking every sample from the template would result in
another middle C. However, if we take every other sample from the template (stride = 2), the
frequency, and thus the pitch, of the note would double, resulting in high C (MIDI key 72).
Generating notes with a frequency in between these two requires the use of non-integer stride
and thus a non-integer index into the template. In our design, we will ignore the fractional
part of the index when looking up samples stored in the template. However, the index must
be maintained as a non-integer number internal to the synthesizer logic. Truncating the index
when looking up samples in the template, results in a slight distortion of the waveform, but
greatly simplifies the logic. You may choose to earn extra credit by modifying your design to
account for the fractional part of the index. As described later in this document, linear
interpolation performed on the closest two samples stored in the template results in a more
accurate waveform.

An interesting property of musical instruments is that the timbre of the sound varies from
note to note over the range of the instrument. Notes played in the high register of a
saxophone, while still characteristically saxophone like, have a different quality than the low
notes.! The consequence of this in our synthesizer is that one note template will not be
enough to reproduce all the notes of a particular instrument. Instead we will store a set of
note templates, usually two per octave, and then choose one from the set when it it time to
generate a note. This mechanism will be implemented in our synthesizers using a template
directory, as illustrated in figure 3. For each MIDI key number there will be a directory entry
stored, indicating which note template to use and what step-size to use when stepping
through the template.

Note that this directory mechanism relieves the synthesizer hardware from having to perform
the costly multiplications by the /2. These ratios are all precomputed and encoded as the
step-sizes in the directory.

Generating notes with arbitrary loudness is simply a matter of scaling the amplitude of the
sample values as they come out of the template.

Figure 3 shows the layout of the EPROM used to store the note information. Directory
entries are stored consecutively starting from address zero. They are indexed by MIDI key
numbers, ranging from 0 to 127. As shown in figure 4 each 4-byte entry contains a 20-bit
pointer and a 12-bit step-size.

The 12-bit step-size is interpreted as a fized point number, with the decimal point fixed after
the highest two bits. Its value is therefore equal to its integer interpretation divided by 2'°.

After the directory, the remaining space stores the note templates. Figure 5 shows the layout
of a single template. Templates are variable length, and need not be at any particular location
or in any particular order. However, they must start at a two-byte boundary. The nine bytes
store three 20-bit addresses that point to the last sample of the attack, the last sample of the
sustain, and the last sample of the decay. After that, on the next even byte boundary, is

Tt is also the case that the timbre of a note varies with the intensity that it is played.

f 16 bits i

0
2
4
6 Directory:
| | . 128 Entries
1FA 4 Bytes Each
1FC
1Fe
200
Templates
7FFFE
Figure 3: EPROM Layout.
~— Template Starting Address
Must be on 2 Byte Boundary
BYTE 3 BYTE 2 BYTE 1 BYTE O
A20------ Al3 |A12------- A5 |[AAd-A1|S11-S8|S7---------
| 10 bits
4 N .
Integer Part — Fractional part
2 bits .
Step Size
12 bits

Figure 4: Directory Entry.

Template Starting Address

End of Attack Address [A12 - - ------- A5 [A4--Al]| -unused- N
End of S in Add Ad--Al]| -unused- | A20-------- Al13
nd of Sustain ress o0 ... M3 AL . G Pointers:
End of Release Address | A12 - -------- A5 | A4--Al]| -unused- 20 bits
- - unused - - A20-------- Al3 {
First Attack Sample | D15 -----ccccmc |mmme oo DO
Second Attack Sample
Attack
I I
First Sustain Sample {
Sustain
I I
First Release Sample {
Release
I I
Last Release Sample | | |

Figure 5: Template Layout.

stored samples from the attack, sustain, and release sections of the note. Each sample is
16-bit two’s complement number.

We will provide you with sample template files and a program for converting these to EPROM
format. The format of the template files is straight forward. If you are interested, and you
have access to sound samples, you are encouraged to generate your own template files.

1.3 MIDI

MIDI enables music synthesizers, sequencers, home computers, etc. to be interconnected
through a standard interface. MIDI signals are sent to a device, such as a synthesizer, via an
opto-isolator and a UART. The opto-isolator uses an LED and a photo-detector to isolate the
electronics of the receiving device from that of the sender. It is usually the case that the two
devices are physically separated by some distance and using the opto-isolator allows the two
systems to have independent (and maybe) different ground potentials. The result is a a more
reliable system.

MIDI uses a current loop to send information. To signal a logic 0, a 5 mA current is sent from

........................

To UART

=
R1 1N914
220 1

hd
WY

Figure 6: MIDI Physical Connection.

sender to receiver and back in a loop of wire. The loop is part of the cable that makes up the
physical connection between the two devices. No current flowing in the loop corresponds to a
logic 1. A MIDI connection is half duplex (one-way), asynchronous, and operates at
31.25+1% Kbaud. Each transmitted character is 10 bits long with a start bit, eight data bits
(LSB first), and a stop bit.

The MIDI cable connects to a 5 pin DIN female receptacle. One of these has been mounted
for you on your FPGA board. The serial signal is wired to an opto-isolator, which performs
electrical isolation and translates the current levels on the MIDI cable to the 5V and 0V
needed by the FPGA. Details of the electrical connection between the MIDI cable and the
opto-isolator are shown in figure 6.

The signal then is received by the UART and processed as MIDI protocol. MIDI protocol is
rich and fairly complete, but this project only requires the knowledge of a very small subset.
All transmitted bytes are either a status byte or a data byte. MIDI messages consist of a
status byte followed by one, two or possibly more data bytes. A status byte always has a MSB
of 1, and a data byte always has a MSB of 0.

There are only two messages that the MIDI synthesizer needs to implement. All other MIDI
messages may be ignored. The pertinent ones are the note-on message and the note-off
message. Fach has two data bytes:

byte 1 byte 2 byte 3

Note On:Channel # key # velocity
1001nnnn Okkkkkkk | Ovvvvvvy

byte 1 byte 2 byte 3

Note Off:Channel # key # velocity
1000nnnn Okkkkkkk | Ovvvvvvv

Velocity is the way within MIDI to represent the strength or intensity of the note. In MIDI
keyboards this value comes from a measurement of the speed at which a key is pressed or

released. In MIDI sound synthesizers, velocity is usually used to control the loudness of the
resulting note.

The channel number allows the message to be directed to 16 different voices or machines. Our
MIDI synthesizer will disregard it and take messages from all channels. Note-on causes the
MIDI synthesizer to begin playing a note of a certain pitch as specified by the key number, at
a particular loudness as specified by the velocity. Note-off causes the MIDI synthesizer to play
the release sequence of the note as soon as it can, i.e. after it finishes playing the current
iteration of the sustain. In typical commercial MIDI synthesizers, there can be many notes
playing at once, hence the key field in the note-off message. Although our MIDI synthesizer
can only play one note at a time, you must still respect the convention by only turning a note
off if the key number matches that of the current note playing. Ignore the velocity field in the
note-off message.

By convention, a note-on message with zero velocity has the same meaning as a note-off
message. Therefore your synthesizer will have to recognize two different ways of sending
note-off events, either as a note-off message or as a note-on message with velocity=0.

2 Project Requirements Summary

By now you should have a pretty good idea of what is required of you for the final project.
You will design and implement a synthesizer on your FPGA board that will accept MIDI
note-on and note-off commands and generate an audio signal suitable for driving headphones.
Your synthesizer must respond correctly to note-on and note-off commands, as follows: When
a note-on command is received, begin a note with the frequency specified by the key number
information and with an amplitude specified by the velocity information. The amplitude
control need not be exact. It is acceptable to use a simple shift operation in place of
multiplication. Until the note-off command is received (i.e., while the key on the MIDI
keyboard is depressed) continue generating sound by looping the sustain portion of the note.
Once a note-off command is received, if that key number matches that of the note currently
being played, then finish the current iteration of the loop and play out the release section. If
while playing a note, a note-on command is received, regardless of the key number,
immediately discontinue playing the current note (without finishing the current loop iteration
or playing out the release section) and begin the new note.

A particularly challenging part of the design is the method of linear interpolation used for
computing output sample values. As discuss above, frequency shifting is performed by
stepping though the note templates using a non-integer step size. In your design you must
support a step-size with two integer bits and 10 fractional bits. This will allow a maximum
frequency shift of just under 2 octaves and frequency shift accuracy to within a couple of
cents. For non-integer step sizes you may use linear interpolation between adjacent sample
values to generate a sample value. This method is illustrated in figure 7. The X values are
used to represent indices into the wave template. X; is the running index into the template.
Each sample value is calculated by first fetching two sample values from the template,
corresponding to adjacent values located at Xy and X;. The two sample values are used to
calculate the local slope of the waveform and the desired sample value Y, as shown in the
figure.

Ys =Yg+ (Xs - Xg) * (Local Slope) Xo| X1 X2

= Yo+ (Xs- X * (Y1 Yo)
since: X;-Xg =1

Figure 7: Linear Interpolation Method.

The minimum requirement for the project is a version of the synthesizer without using
interpolation. Once you have that working, and if you have the time, you can add
interpolation for extra credit. For the non-interpolation version, you can simply output a
stored sample value close to the desired sample values by truncating the running template
index.

If you don’t own headphones (most people have headphones from their portable compact disk
players) we will have some that you can checkout. We will have a few MIDI keyboards and
MIDI interfaces in the PCs for generating MIDI commands. These will be spread around in
204B and 123 Cory.

3 Project Components

You can get a good idea of the components needed to implement your synthesizer by
examining figure 1. We will provide you with all of these and any other miscellaneous small
components. If you decide to do something extra, you will have to buy your own parts. Before
you do that, however, check with us—we might have some spare parts in stock.

Refer to the online data sheets for detailed information on the major external components.
Review this information early so that you can plan the board layout.

Following is a brief description of the major components:

In
MIDI Note
UART Parser Manager
\PROM : Sound
[PROM .. Generator

DAC | Out
Interface

Figure 8: Synthesizer Block Diagram.

FPGA All the logic associated with the synthesizer design must be implemented within the

FPGA device (Xilinx 4005).

Opto-isolator This part provides electrical isolation from the MIDI input cable and converts
the current loop to voltages for input to the FPGA. See figure 6 for details and
additional components.

Digital-to-analog converter (DAC) The DAC is used to convert the 16-bit output from
the sound generator into an analog waveform. The DAC should be operated with a
sampling rate of 31.25KHz. The digital data input to the DAC is bit-serial; see the data
sheet for details.

Audio Amplifier The analog output of the DAC does not have sufficient power to drive
headphones. Also, the DAC is an expensive device and we which to protect its output
from short circuits and other potentially hazardous conditions. Therefore we will use an
Audio Amp as a interface between the analog output of the DAC and the headphone
output on the board.

EPROM A 4-Mbit EPROM, ST 27X040, will be used to store the directories and note
templates.

4 Recommended High Level Organization

The internal organization of the logic within the FPGA is up to you, as long as you meet the
functional requirements. However, you should consider the organization shown in figure 8.

Each block in the block diagram has its own FSM controller and a datapath. The UART
converts the serial bit stream from the MIDI input into parallel bytes. It signals the
availability of a byte with a data ready signal. The UART runs with a clock frequency of 8X
the MIDI clock rate. With the exception of the sample rate clock, 31.25KHz, the rest of the
system should run using a 4 or 8MHz clock.

10

The MIDI Parser is used to “recognize” MIDI commands. Its output is a pair of signals,

NOTE-ON and NOTE-OFF, and the contents of two registers, KEY and VELOCITY.

The Note Manager is used to control the actions taken when a MIDI key is pressed or
released. It receives input from the MIDI Parser and a signal from the Sound Generator
indicating the end of playing the release section of a note.

The heart of the synthesizer is the Sound Generator. This part does all the calculation
needed to produce a new sample every 32us. It receives some control information from the
Note Manager, interfaces directly with the EPROM, and produces samples sent to the DAC
interface. The main control loop for this block is triggered once per sample period. It does the
work to generate a new sample, passes it to the DAC interface, then waits for the next sample
clock.

The DAC interface has a buffer to hold a sample ready to send to the DAC. The sample clock
triggers the bit-serial transfer of its buffer contents to the DAC.

5 Checkpoints

This section describes a list of checkpoints. Each week you are required to demonstrate to
your TA a part of your design. Part of your final project grade depends successful and timely
completion of these checks. Of course, you are free (an encouraged) to work ahead. These
checkpoints are the minimum amount that you need to have completed each week. By
following our plan, you will complete your project with a week to spare at the end. This will
give you time to relax, or fix-up some parts of your design, or do some extra credit work.
Extra-credit will only be given if you first have a working design.

11

Project Checkpoints:

1. 2/28, UART Design and Test.
2. 3/6, Wire-wrap and ROM Interfacing.

3. 3/13, MIDI Parser.

Wire up opto-isolator, demonstrate working connection between MIDI controller and
MIDI UART, demonstrate working MIDI command parser displaying MIDI information
on 7-segment display.

4. 3/20, Audio Stage.

Wire up the DAC and Audio Amp. Write test program to put out a ramp, using a
counter as a waveform generator. Display the analog waveform on the scope and listen
using headphones.

5. 3/27, Recess.

6. 4/3, Monotone Notes.

Demonstrate a simplified synthesizer that always plays notes at the same frequency and
same amplitude. The circuit should play the attack, looped sustain, and release for the
instrument’s first template (at address 0x200) using a unit step-size (it is not necessary
to read the template entry from the master directory for this functionality). Attack and
release should play in response to MIDI note-on/note-off events, or alternatively, in
response to pressing push-buttons on the Xilinx board.

7. 4/10, Notes of Arbitrary Frequency.

Extend the synthesizer to play arbitrary notes at their proper frequency (but same
amplitude). Attack, looped sustain, and release samples must now be read from the
correct template with the correct fractional step-size (interpolation is not required).
Attack should play in response to MIDI note-on, and release should play in response to
the active note’s note-off. If a note-on arrives while an old note is playing, the old note
should be abandoned immediately, and the new note should begin its attack.

8. 4/17, Velocity Sensitivity

Extend the synthesizer to play each note at an amplitude corresponding to its velocity.
The mapping from velocity code (0x00-0x7F) to amplitude scaling factor (0-1) must
come from a lookup table.

9. 4/24, Spare Week.

Clean up and optimize your design. If time permits, do extra credit work.

10. 5/1, Final Checkoff.

12

6 Extra Credit

A number of enhancements to the synthesizer for extra credit are possible. However, you will
not be given any extra credit if you cannot demonstrate a working project. Your first priority
is to satisfy the above design specification.

The following is a list of suggested topics for extra credit. We may add more as the semester
progresses, and you are welcome to propose your own. Your ideas and algorithms for any
extra credit work (including for topics listed below) must first be approved by the professor.

¢ Minimal CLB Count. One group will qualify for extra credit by achieving the
smallest class-wide CLB count.

¢ Interpolation. Add linear interpolation for sample lookup.

e Click-Free Note Transition. Implement a smooth, faded transition between notes
when a new note interrupts a playing note.

e Polyphony. Add the ability to play multiple notes at once.

e Velocity Sensitive Template Lookup. Add the ability to index templates not only
on key number but also on velocity.

¢ Envelope Generators. Add digital filters and envelope generators to process the
output sound.

13

