
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS150 J. Wawrzynek
Spring 2000 E. Caspi

Project Checkpoints #5, 6, 7

This handout covers the remaining checkpoints for the MIDI project. It defines the project
schedule for the next few weeks, from now until final check-off and report time.
By now, you have a complete project board and circuit designs for all input/output
operations. What remains to be designed is the sound synthesis engine, the heart of the
project.

1 Schedule

The following is a week-by-week schedule for the next few weeks of class:

• 3/27/00 – spring break
• 4/3/00 – Project checkpoint #5: monotone notes
• 4/10/00 – Project checkpoint #6: notes of arbitrary frequency
• 4/17/00 – Project checkpoint #7: velocity sensitivity
• 4/23/00 – Spare week (clean-up design, extra credit)
• 5/1/00 – Final project check-off

2 Checkpoints

The remainder of the project is divided into three checkpoints. These checkpoints
establish the minimum progress which you should be making each week. You are, of
course, free to work ahead. In addition, at the end of the semester, there will be a final
check-off and project demonstration in lab.

• Checkpoint #5: Monotone Notes.

Demonstrate a simplified synthesizer that always plays notes at the same frequency
and same amplitude. The circuit should play the attack, looped sustain, and release
for the instrument's first template (at address 0x200) using a unit step-size. It is
not necessary to read the template entry from the master directory to achieve this
functionality. It is, however, necessary to read the template header (at 0x200) to
retrieve end-pointers for the attack, sustain, and release regions. Attack and release
should be played in response to MIDI note-on/note-off events, or alternatively, in
response to pressing push-buttons on the Xilinx board.

• Checkpoint #6: Notes of Arbitrary Frequency.

Extend the synthesizer to play arbitrary notes at their proper frequency (but same
amplitude). Attack, looped sustain, and release samples must now be read from the
correct template with the correct fractional step-size. Interpolation is not required,
nor is velocity sensitivity. Attack should be played in response to MIDI note-on,
and release should be played in response to the active note's note-off. If a note-on
arrives while an old note is playing, the old note should be abandoned immediately,
and the new note should begin its attack.

The proposed method of abandoning an old note to begin an overriding one
typically creates noise (clicks) due to a discontinuity in the output waveform. For
extra credit, you may wish to implement a cleaner-sounding method of switching
notes. The old note should probably be “faded out” (scaled down in amplitude)
over some short period of time, say 10ms, before or while the new note begins.
Monophonic (single-note) mode in commercial synthesizers typically implements a
legato/glissando transition between notes, fading or even pitch-bending from the
old note to the sustain part of the new note (i.e. without playing the attack of the
new note). You may choose your own semantics for a click-free note transition
algorithm, but the algorithm must be approved by the professor before you begin.

• Checkpoint #7: Velocity Sensitivity.
Extend the synthesizer to play each note at an amplitude corresponding to its
velocity. The mapping from velocity code (0x00 – 0xFF) to amplitude scaling
factor (0--1) must come from a lookup table. A flexible mapping is needed to
compensate for the fact that different MIDI keyboards send different velocities for
a key press of a given pressure (i.e. they have different velocity curves). The
mapping should also compensate for the non-linearity between key pressure,
velocity, and amplitude. You may use the table values provided in lecture or
experiment with your own (linear, power, etc.).

3 EPROM Configurations

We will provide a number of EPROM bit-files containing instrument samples. These bit-
files will reside in: U:\WVLIB\CS150\INSTRMNT\, as well as: C:\CS150\INSTRMNT\
on the EPROM programming workstations in 204B Cory. The files are binary dumps and
must be loaded using the EPROM programmer’s “binary” mode (File→Format→Binary).
The samples include:

• agtr.bin – Acoustic guitar
• loudv.bin – Loud violin
• marimba.bin – Marimba
• sines.bin – Sine wave
• longsines.bin – Long-playing sine wave

You are invited to create new sample files, following the format described in the project
spec.

Name: _______________________ Name: _______________________ Lab: ________

4 Check-offs

• Checkpoint #5: monotone notes. TA: ________ date: ______

• Checkpoint #6: notes of arbitrary frequency. TA: ________ date: ______

• Checkpoint #7: velocity sensitivity TA: ________ date: ______

