
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS150 J. Wawrzynek
Spring 2000 E. Caspi

Homework #11 – Solution

7.10 The BCD counter cycles in states 0-9. The self-starting transitions from states 10-

15 (shown in gray) are chosen to make the K-map logic optimization convenient.

State Next State
S3 S2 S1 S0 NS3 NS2 NS1 NS0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 1 0 1 1
1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 0 1 0 0
1 1 1 0 1 1 1 1
1 1 1 1 1 0 0 0

 State Transition Diagram State Transition Table

S1S0

S3S2 00 01 11 10

 S1S0

S3S2 00 01 11 10

00 0 0 0 0

00 0 0 1 0

01 0 0 1 0

01 1 1 0 1

11 1 0 1 1

11 1 1 0 1

10 1 0 0 1

10 0 0 1 0

NS3 = S3S'0 + S2S1S0 NS2 = S2S'0 + S2S'1 + S'2S1S0

S1S0

S3S2 00 01 11 10

 S1S0

S3S2 00 01 11 10

00 0 1 0 1

00 1 0 0 1

01 0 1 0 1

01 1 0 0 1

11 0 0 0 1

11 1 0 0 1

10 0 0 0 1

10 1 0 0 1

NS1 = S1S'0 + S'3S'1S0 NS0 = S'0

0000

0001

0010

0011

0100

1001

1000

0111

0110

0101

1111

1101

1011 1010

1100

1110

7.11 The gray-code counter cycles through all possible 4-bit codes. No self-starting

transitions are needed because all possible states are already in the cycle.

State Next State

S3 S2 S1 S0 NS3 NS2 NS1 NS0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 1
0 0 1 0 0 1 1 0
0 0 1 1 0 0 1 0
0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 1
0 1 1 1 0 1 0 1
1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 1
1 0 1 1 1 0 0 1
1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 1
1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 0

 State Transition Diagram State Transition Table

S1S0

S3S2 00 01 11 10

 S1S0

S3S2 00 01 11 10

00 0 0 0 0

00 0 0 0 1

01 1 0 0 0

01 1 1 1 1

11 1 1 1 1

11 1 1 1 0

10 0 1 1 1

10 0 0 0 0

NS3 = S3S1 + S3S0 +S2S'1S'0 NS2 = S2S'1 + S2S'0 + S'3S1S'0

S1S0

S3S2 00 01 11 10

 S1S0

S3S2 00 01 11 10

00 0 1 1 1

00 1 1 0 0

01 0 0 0 1

01 0 0 1 1

11 0 1 1 1

11 1 1 0 0

10 0 0 0 1

10 0 0 1 1

NS1 = S1S'0 + S'3S'2S0 + S3S2S0 NS0 = S'3S'2S'1 + S'3S2S1
 + S3S2S'0 + S3S'2S0

1011

0001

0011

0010

0100

1010

1110

1111

1101

1100 0101 0110 0111

1001 1000 0000

8.5 A particular Mealy machine has 3 FFs, 2 inputs, 6 outputs.

(a) Three FFs can represent 5–8 states.

(b) With 2 inputs, there are 22=4 possible input patterns. Thus there are at most 4
transitions from any given state.

(c) With 8 states, there are at most 8 transitions into any given state.

(d) Since a Mealy machine associates outputs with transitions, the maximum number of
output patterns is upper-bounded by the number of transitions. There are at most 32
transitions (4 from each of 8 states), hence at most 32 output patterns. This is within
the limit 26=64 imposed by the number of output bits.

8.11 The Mealy state transition table is shown below. The next-state function is identical to

the Moore implementation in Katz (Figures 8.13-8.15). Only the OPEN output is
different. Omitted from the table is the implicit reset transition “reset/0” from each state
to state 00. We hack this transition into the design by using a reset pin on the state flip-
flops and by ANDing OPEN with reset’ (this assumes that reset is synchronous).

Present
State

Inputs Next State Output

Q1 Q0 D N D1 D0 OPEN
0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 1 0 0
0 0 1 1 X X X
0 1 0 0 0 1 0
0 1 0 1 1 0 0
0 1 1 0 1 1 1
0 1 1 1 X X X
1 0 0 0 1 0 0
1 0 0 1 1 1 1
1 0 1 0 1 1 1
1 0 1 1 X X X
1 1 0 0 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 X X X

D N

Q1Q0 00 01 11 10

00 0 0 X 0

01 0 0 X 0

11 1 1 X 1

10 0 1 X 1

OPEN = Q1Q0 + Q1N + Q1D
 = Q1(Q0+N+D)

D Q
Q’

R

D Q
Q’

R

Q1
D

Q0
N

Q’0
N

Q0
N’

Q1
N

Q1
D

N
D

Q0

Q1

reset

reset

reset’
OPEN

Q’1

Q’0

The diagram above shows an asynchronous Mealy machine. A synchronous Mealy
machine would look the same except that OPEN must pass through an additional flip-
flop. The synchronous Mealy machine delays its outputs by a cycle, much like the
Moore machine. However, while the output of the Moore machine depends only on the
present state, the output of the synchronous Mealy machine still depends on the particular
transition that entered the present state (i.e. depends on the previous state and input).

8.17 In a circuit that compares a present input with a previous input, the states must encode the
value of the previous input. A Mealy design does just that – it uses 4 states to represent
the previous input, plus a start state (5 states total). Since Mealy outputs are allowed to
depend on inputs from the same cycle, the Mealy design can compute and output
comparison results immediately. In a Moore design, the output (comparison result) must
be encoded in the state and is thus delayed until the next state. Each state must encode
not only the previous input but also the result of the previous comparison. For each of
the 4 possible previous inputs, there are 3 possible comparison results, requiring 12
states, plus a start state (13 states total).

(a) Mealy machine.

Transition notation: X1X2/Z1Z2

10

11 01

00

start

01/10 00/01

10/10 11/10

00/01 11/10

01/01 10/01

01/01

11/10

10/10 00/01

00/00

01/00 11/00

10/00

00/00

01/00

11/00

10/00

(b) Moore machine.
The name of each state indicates the input used to reach it and the comparison
between that input and the previous one. The output of each state is denoted as
(Z1Z2). The inputs associated with each transition arc are omitted for brevity.

00=
(00)

00<
(01)

00>
(10)

01>
(10)

01=
(00)

01<
(01)

11=
(00)

11<
(01)

11>
(10)

10=
(00)

10<
(01)

10>
(10)

Start
(00)

