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Homework #11 – Solution 
 
7.10 The BCD counter cycles in states 0-9.  The self-starting transitions from states 10-

15 (shown in gray) are chosen to make the K-map logic optimization convenient. 
 

State Next State 
S3 S2 S1 S0 NS3 NS2 NS1 NS0 
0 0 0 0 0 0 0 1 
0 0 0 1 0 0 1 0 
0 0 1 0 0 0 1 1 
0 0 1 1 0 1 0 0 
0 1 0 0 0 1 0 1 
0 1 0 1 0 1 1 0 
0 1 1 0 0 1 1 1 
0 1 1 1 1 0 0 0 
1 0 0 0 1 0 0 1 
1 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 
1 0 1 1 0 1 0 0 
1 1 0 0 1 1 0 1 
1 1 0 1 0 1 0 0 
1 1 1 0 1 1 1 1 
1 1 1 1 1 0 0 0 
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7.11 The gray-code counter cycles through all possible 4-bit codes.  No self-starting 

transitions are needed because all possible states are already in the cycle. 
 

 
State Next State 

S3 S2 S1 S0 NS3 NS2 NS1 NS0 
0 0 0 0 0 0 0 1 
0 0 0 1 0 0 1 1 
0 0 1 0 0 1 1 0 
0 0 1 1 0 0 1 0 
0 1 0 0 1 1 0 0 
0 1 0 1 0 1 0 0 
0 1 1 0 0 1 1 1 
0 1 1 1 0 1 0 1 
1 0 0 0 0 0 0 0 
1 0 0 1 1 0 0 0 
1 0 1 0 1 0 1 1 
1 0 1 1 1 0 0 1 
1 1 0 0 1 1 0 1 
1 1 0 1 1 1 1 1 
1 1 1 0 1 0 1 0 
1 1 1 1 1 1 1 0 
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NS3 = S3S1 + S3S0 +S2S'1S'0  NS2 = S2S'1 + S2S'0 + S'3S1S'0 
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         + S3S2S'0 + S3S'2S0 
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8.5 A particular Mealy machine has 3 FFs, 2 inputs, 6 outputs. 

(a) Three FFs can represent 5–8 states. 

(b) With 2 inputs, there are 22=4 possible input patterns.  Thus there are at most 4 
transitions from any given state. 

(c) With 8 states, there are at most 8 transitions into any given state. 

(d) Since a Mealy machine associates outputs with transitions, the maximum number of 
output patterns is upper-bounded by the number of transitions.  There are at most 32 
transitions (4 from each of 8 states), hence at most 32 output patterns.  This is within 
the limit 26=64 imposed by the number of output bits. 

 
8.11 The Mealy state transition table is shown below.  The next-state function is identical to 

the Moore implementation in Katz (Figures 8.13-8.15).  Only the OPEN output is 
different.  Omitted from the table is the implicit reset transition “reset/0” from each state 
to state 00.  We hack this transition into the design by using a reset pin on the state flip-
flops and by ANDing OPEN with reset’ (this assumes that reset is synchronous). 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Present 
State 

Inputs Next State Output 

Q1 Q0 D N D1 D0 OPEN 
0 0 0 0 0 0 0 
0 0 0 1 0 1 0 
0 0 1 0 1 0 0 
0 0 1 1 X X X 
0 1 0 0 0 1 0 
0 1 0 1 1 0 0 
0 1 1 0 1 1 1 
0 1 1 1 X X X 
1 0 0 0 1 0 0 
1 0 0 1 1 1 1 
1 0 1 0 1 1 1 
1 0 1 1 X X X 
1 1 0 0 1 1 1 
1 1 0 1 1 1 1 
1 1 1 0 1 1 1 
1 1 1 1 X X X 

D N 

 
Q1Q0 00 01 11 10 

 

00 0 0 X 0 
 

01 0 0 X 0 
 

11 1 1 X 1 
 

10 0 1 X 1 
 

OPEN  = Q1Q0 + Q1N + Q1D 
  = Q1(Q0+N+D) 

D        Q 
Q’

R 

D        Q 
Q’

R 

Q1 
D 

Q0 
N 

Q’0 
N 

Q0 
N’ 

Q1 
N 

Q1 
D 

N 
D 

Q0 

Q1 

reset 

reset 

reset’ 
OPEN 

Q’1 

Q’0 



The diagram above shows an asynchronous Mealy machine.  A synchronous Mealy 
machine would look the same except that OPEN must pass through an additional flip-
flop.  The synchronous Mealy machine delays its outputs by a cycle, much like the 
Moore machine.  However, while the output of the Moore machine depends only on the 
present state, the output of the synchronous Mealy machine still depends on the particular 
transition that entered the present state (i.e. depends on the previous state and input). 
 

8.17 In a circuit that compares a present input with a previous input, the states must encode the 
value of the previous input.  A Mealy design does just that – it uses 4 states to represent 
the previous input, plus a start state (5 states total).  Since Mealy outputs are allowed to 
depend on inputs from the same cycle, the Mealy design can compute and output 
comparison results immediately.  In a Moore design, the output (comparison result) must 
be encoded in the state and is thus delayed until the next state.  Each state must encode 
not only the previous input but also the result of the previous comparison.  For each of 
the 4 possible previous inputs, there are 3 possible comparison results, requiring 12 
states, plus a start state (13 states total). 
 
(a) Mealy machine. 

Transition notation:  X1X2/Z1Z2 
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(b) Moore machine. 
The name of each state indicates the input used to reach it and the comparison 
between that input and the previous one.  The output of each state is denoted as 
(Z1Z2).  The inputs associated with each transition arc are omitted for brevity. 
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