University of California at Berkeley
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

EECS150
Spring 2000
J. Wawrzynek
E. Caspi

Homework \#10 - Solution

6.1 By pushing bubbles, we can convert the cross-coupled NAND pair into a crosscoupled OR pair (an RS latch!) with inverted inputs and outputs. Thus the crosscoupled NAND behaves like an RS latch with inverted inputs and outputs.
Complementary inputs $\{0,1\},\{1,0\}$ set and reset the latch, respectively. High inputs $\{1,1\}$ hold the present value. Low inputs $\{0,0\}$ are forbidden.

A

Q
\bar{Q}

A

Q

B \bar{Q}

A
 Q

B
Q

A	B	Q
0	0	unstable
0	1	1
1	0	0
1	1	hold

6.2 An RS latch can identify which of two signals falls $1 \rightarrow 0$ first. The signals are attached to inputs $\{R, S\}$. With both signals high, the output $\{\mathrm{Q}, \mathrm{Q}\}$ is $\{0,0\}$ and stable. When one signal falls, the input $\{0,1\}$ or $\{1,0\}$ forces the RS latch to set or reset. When both signals have fallen, the input $\{0,0\}$ makes the latch hold its output, "remembering" which signal fell first - $\{1,0\}$ indicates that R fell first, and $\{0,1\}$ indicates that S fell first. Katz actually asks us to detect the opening of a switch, but it is easy to convert that into the falling of a signal.

To identify which of three signals falls first, we can use 3 RS latches to perform 3 pairwise comparisons. Each signal participates in 2 pairwise comparisons. The first signal to fall "wins" both of its comparisons. The AND of a signal's 2 comparison results indicates whether it was the first to fall.

This method can be extended to identify which of n signals falls first. Each signal participates in $n-1$ pairwise comparisons, once with every other signal. The AND of a signal's comparison results indicates whether the signal was the first to fall. This method requires a total of $n(n-1)$ pairwise comparisons (RS latches) and n ($n-1$)-input AND gates. The circuit area grows roughly quadratically with n.

Interestingly, this method can be extended to find the order of n falling signals. The number of pairwise comparisons won by a signal indicates its rank. The first signal to fall wins all $n-1$ of its comparisons. The next signal to fall wins $n-2$ of its comparisons. The last signal to fall wins none of its comparisons. Thus, in place of AND gates, we can use adders to compute a signal's rank.
6.14

Implement a JK flip-flop from a D flip-flop

Excitation Table

0	Q_{+}	D
0	0	0
0	1	0
1	0	1
1	1	1

6.15

Implement a J-K flip-flop from a T flip-flop

$$
T=J \bar{Q}+K Q
$$

Excitation Table

6.16

Implement a D flip-flop from a J-K flip-flop

$$
J=D
$$

$$
K=\overline{\mathbf{D}}
$$

Excitation Table

a	$a+$	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

6.17

Implement a D flip-flop from a T flip-flop

$T=\mathbf{D} \overline{\mathbf{Q}}+\overline{\mathrm{D}} \mathbf{Q}$

Excitation Table

6.18

Implement a T flip-flop from a J-K flip-flop

6.19 Implement a T flip-flop from a D flip-flop.

Both implementations shown here are derived by inspection from the behavior of a T flip flop: $\mathrm{T}=0$ retains $\mathrm{Q}, \mathrm{T}=1$ inverts Q .

Error Correction Codes (CRC)

The long division modulo 2 is as follows, yielding remainder 00000 . Recall that in modulo 2, addition and subtraction become XOR without carry or borrow.

$$
110101 \begin{array}{r}
110001010 \\
\cline { 2 - 3 } \\
\\
\\
\hline \frac{110101}{0111011} \\
\frac{110101}{00111010} \\
\\
\\
\end{array}
$$

A trace of the corresponding LFSR computation follows:

		FFFFF
Time	Bit	43210
-------------1		
0		00000
1	1	00001
2	0	00010
3	1	00101
4	0	01010
5	0	10100
6	0	11101
7	1	01110
8	1	11101
9	0	01111
10	1	11111
11	0	01011
12	1	10111
13	1	11010
14	1	00000
15	0	00000

