
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS150 J. Wawrzynek
Spring 2000 E. Caspi

Homework #10 – Solution

6.1 By pushing bubbles, we can convert the cross-coupled NAND pair into a cross-

coupled OR pair (an RS latch!) with inverted inputs and outputs. Thus the cross-
coupled NAND behaves like an RS latch with inverted inputs and outputs.
Complementary inputs {0,1}, {1,0} set and reset the latch, respectively. High
inputs {1,1} hold the present value. Low inputs {0,0} are forbidden.

A B Q
0 0 unstable
0 1 1
1 0 0
1 1 hold

Q

Q

A

B

Q

Q

A

B

Q

Q

A

B

6.2 An RS latch can identify which of two signals falls 1→0 first. The signals are
attached to inputs {R,S}. With both signals high, the output {Q,Q'} is {0,0} and
stable. When one signal falls, the input {0,1} or {1,0} forces the RS latch to set
or reset. When both signals have fallen, the input {0,0} makes the latch hold its
output, "remembering" which signal fell first – {1,0} indicates that R fell first,
and {0,1} indicates that S fell first. Katz actually asks us to detect the opening of
a switch, but it is easy to convert that into the falling of a signal.

To identify which of three signals falls first, we can use 3 RS latches to perform 3
pairwise comparisons. Each signal participates in 2 pairwise comparisons. The
first signal to fall "wins" both of its comparisons. The AND of a signal's 2
comparison results indicates whether it was the first to fall.

This method can be extended to identify which of n signals falls first. Each signal
participates in n-1 pairwise comparisons, once with every other signal. The AND
of a signal's comparison results indicates whether the signal was the first to fall.
This method requires a total of n(n-1) pairwise comparisons (RS latches) and n
(n-1)-input AND gates. The circuit area grows roughly quadratically with n.

Interestingly, this method can be extended to find the order of n falling signals.
The number of pairwise comparisons won by a signal indicates its rank. The first
signal to fall wins all n-1 of its comparisons. The next signal to fall wins n-2 of
its comparisons. The last signal to fall wins none of its comparisons. Thus, in
place of AND gates, we can use adders to compute a signal's rank.

R Q

S Q

A

B

A fell first

B fell first

R Q

S Q

R Q

S Q

R Q

S Q

A

B

C

A fell first

B fell first

C fell first

Signal falls
when switch

opens
Large R

6.19 Implement a T flip-flop from a D flip-flop.

Both implementations shown here are derived by inspection from the behavior of
a T flip flop: T=0 retains Q, T=1 inverts Q.

D Q

Q

0
1

CLK

T

D Q

Q

CLK

T

Error Correction Codes (CRC)

 The long division modulo 2 is as follows, yielding remainder 00000.

Recall that in modulo 2, addition and subtraction become XOR without carry or
borrow.

 110001010
110101 | 101000110101110
 110101
 0111011
 110101
 00111010
 110101
 00111110
 110101
 00101111
 110101
 0110101
 110101
 0000000

A trace of the corresponding LFSR computation follows:

 FFFFF
Time Bit 43210

 0 00000
 1 1 00001
 2 0 00010
 3 1 00101
 4 0 01010
 5 0 10100
 6 0 11101
 7 1 01110
 8 1 11101
 9 0 01111
10 1 11111
11 0 01011
12 1 10111
13 1 11010
14 1 00000
15 0 00000

