University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

EECS150 Spring 2000

В

J. Wawrzynek E. Caspi

Homework #10 – Solution

6.1 By pushing bubbles, we can convert the cross-coupled NAND pair into a crosscoupled OR pair (an RS latch!) with inverted inputs and outputs. Thus the crosscoupled NAND behaves like an RS latch with inverted inputs and outputs. Complementary inputs {0,1}, {1,0} set and reset the latch, respectively. High inputs {1,1} hold the present value. Low inputs {0,0} are forbidden.

Q

6.2 An RS latch can identify which of two signals falls $1\rightarrow 0$ first. The signals are attached to inputs {R,S}. With both signals high, the output {Q,Q'} is {0,0} and stable. When one signal falls, the input {0,1} or {1,0} forces the RS latch to set or reset. When both signals have fallen, the input {0,0} makes the latch hold its output, "remembering" which signal fell first – {1,0} indicates that R fell first, and {0,1} indicates that S fell first. Katz actually asks us to detect the opening of a switch, but it is easy to convert that into the falling of a signal.

To identify which of three signals falls first, we can use 3 RS latches to perform 3 pairwise comparisons. Each signal participates in 2 pairwise comparisons. The first signal to fall "wins" both of its comparisons. The AND of a signal's 2 comparison results indicates whether it was the first to fall.

This method can be extended to identify which of *n* signals falls first. Each signal participates in *n*-1 pairwise comparisons, once with every other signal. The AND of a signal's comparison results indicates whether the signal was the first to fall. This method requires a total of n(n-1) pairwise comparisons (RS latches) and *n* (n-1)-input AND gates. The circuit area grows roughly quadratically with *n*.

Interestingly, this method can be extended to find the order of n falling signals. The number of pairwise comparisons won by a signal indicates its rank. The first signal to fall wins all n-1 of its comparisons. The next signal to fall wins n-2 of its comparisons. The last signal to fall wins none of its comparisons. Thus, in place of AND gates, we can use adders to compute a signal's rank.

6.14

Implement a JK flip-flop from a D flip-flop

6.15

Implement a J-K flip-flop from a T flip-flop

_1	J	K	Q	1 9+-	+T
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	0	0
3	0	1	1	0	1
4	1	0	0	1	1
5	1	0	1	1	0
6	1	1	0	1 1	1
71	1	1	1	0	1

Excitation Table					
۹	Q+	т			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Implement a D flip-flop from a J-K flip-flop

6.17

Implement a D flip-flop from a T flip-flop

 $T = D\overline{Q} + \overline{D}Q$

6.16

6.18 Implement a T flip-flop from a J-K flip-flop

6.19 Implement a T flip-flop from a D flip-flop.Both implementations shown here are derived by inspection from the behavior of a T flip flop: T=0 retains Q, T=1 inverts Q.

Error Correction Codes (CRC)

The long division modulo 2 is as follows, yielding remainder 00000. Recall that in modulo 2, addition and subtraction become XOR without carry or borrow.

	 110001010
110101	101000110101110
	110101
	0111011
	110101
	00111010
	110101
	00111110
	110101
	00101111
	110101
	0110101
	110101
	000000

A trace of the corresponding LFSR computation follows:

		FFFFF
Time	Bit	43210
0		00000
1	1	00001
2	0	00010
3	1	00101
4	0	01010
5	0	10100
6	0	11101
7	1	01110
8	1	11101
9	0	01111
10	1	11111
11	0	01011
12	1	10111
13	1	11010
14	1	00000
15	0	00000