University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

EECS150
J. Wawrzynek

Spring 2000
E. Caspi

Homework \#1 - Solution

1. Recall, in a performance-cost tradeoff, we typically seek to maximize performance and/or minimize cost.

- Region I: The system is optimized for low cost. The high slope indicates that reducing cost incrementally further requires a big loss in performance
- Region II: The system is balanced. Cost and performance trade off well.
- Region III: The system is optimized for high performance. The low slope indicates that increasing performance incrementally further requires a large additional cost.

2. Describe an object hierarchically. This is fairly open ended. Be creative.
3. There are 12 3-bit gray codes.

Recall that an n-bit gray-code is a cyclic sequencing of all n-bit numbers such that successive numbers differ by exactly one bit. You should be able to list and count all such sequences for $\mathrm{n}=3$.

There is a nice geometric interpretation for gray codes. For a given bit width n, the set of all n-bit numbers corresponds to the corners of an n-dimensional hypercube (e.g. 2-bit numbers are the corners of a 2D square; 3-bit numbers are the corners of a 3D cube). Each axis of the cube represents one bit, with coordinates valued 0 or 1.

2-bit numbers

3-bit numbers

An n-bit gray code is a cyclic sequence of all n-bit numbers such that successive numbers differ in exactly 1 bit. Geometrically, such a sequence is a path along the legs of the hypercube, visiting every corner, and ultimately returning to the starting point (such a path is called a "Hamilton cycle"). The number of unique n-bit gray codes is the number of unique paths around an n-bit hypercube. Keep in mind that rotations, mirror images, and direction reversal may transform a path into a multitude of unique paths.

There are twelve (12) unique paths which cover the 3D cube. The basic topology is the same for all paths. The twelve-fold multiplicity arises from rotating about the 000-111 axis (3x), mirroring about the vertical 000-101 plane (2x), and reversing the path direction (2x).

4. 125 decimal is " 1111101 " in binary, or padded to 8 bits: " 01111101 ".

25 decimal is " 11001 " in binary, or padded to 8 bits: " 00011001 ". In all examples, we assume that a wire carries a value " 1 " when not in use.
a. The "bit-parallel" waveform transmits one bit on each of 8 wires.

Bit-parallel transmission of 125
b. The "bit-serial" waveform transmits each bit in sequence on 1 wire, LSB first, MSB last, in 1 second intervals.

Bit-serial transmission of 125
c. With parity and start/stop bits, each byte transmission look like:
\{start (0), LSB ... MSB, parity, stop (0) \}.

5. Convert the following numbers from base ten to two's complement, one's complement and sign magnitude (use 16 bits for each number). $-1011,-32752,1500$
a) Decimal-1011

- Positive decimal 1011 = binary " 1111110011 "
- To negate into one's complement, pad with a " 0 " sign bit, then invert all bits: binary " 10000001100 ".
- Two's complement $=$ one's complement +1 : binary " 10000001101 ".
- Sign magnitude $=$ sign bit adjoined to positive value: binary " 11111110011 ".
b) Decimal - 32752
- Positive decimal 32752 = binary " 111111111101111 "
- To negate into one's complement, pad with a " 0 " sign bit, then invert all bits: binary " 1000000000010000 ".
- Two's complement $=$ one's complement +1 : binary " 1000000000010001 ".
- Sign magnitude $=$ sign bit adjoined to positive value: binary "1111111111101111".
c) Decimal 1500
- Positive decimal $1500=$ binary " 100011001010 ".
- For one's complement representation of a positive number, simply pad with a " 0 " sign bit: binary " 0100011001010 ".
- For two's complement representation of a positive number, do same: binary "0100011001010".
- For sign-magnitude representation of a positive number, do same: binary " 0100011001010 ".

