Detecting and Correcting Bit Errors

Some things we do in computer systems puts
the integrity of data at risk.

e Storing bits as charge on capacitors
(DRAM, dynamic logic).

e Storing bits with mechanical systems
(hard disk, floppy disk).

e Sending bits long distances (copper, fiber,
wireless networks).

Today’s Lecture

How can we design computer systems to
work in the face of bit errors?

We consider digital issues only — analog

techniques important, but outside of the
scope of this course.

Slide 1



The Big Idea: Redundant Encoding

When storing or sending information, add
extra bits (called redundancy).

Error Detection

e When accessing or receiving information,
use the extra bits to deduce if corruption
occurred.

e Trivial example: send each bit twice, if the
values don’t match, there was corruption.

Error Correction

e When accessing or receiving information,
use the extra bits to fix errors in the data.
e Trivial example: send each bit three times,
use a voting scheme to correct single bit er-
rors.

e All error correction has its limits. Trivial
example: what if noise corrupted two of the
three copies?

Slide 2



Detection Versus Correction

What are the tradeofts between detection
and correction?

Error Detection

+ Needs fewer redundancy bits.

— If an error is detected, receiver requests
a resend of the data. This adds latency and
complexity.

— If information was destroyed (like a
DRAM flipping a bit) there is no data to
resend.

Error Correction

+ Low latency, correction happens as a part
of the logic for receiving the data.

— Uses more redundancy bits.

— If too many errors happened, data cannot
be corrected, and a resend will be needed
anyways.

Slide 3



Today’s Lecture

Detection and correction implementations.

Part I. Simple Algorithms
e Parity: Single bit detection.
e Hamming Codes: Simple error correction.
Part II. Detecting Multiple Errors

e Theory: Modulo 2 arithmetic

e Practice: Cyclic redundancy codes

Slide 4



Simple Error Detection

Problem: Send an N bit quantity b, ... b,_1.
Give the receiver a way to detect a single
bit error.

Solution: Parity
e Send N+1 bits (b, ... by,).

e Bit b,, is one if there is an odd number of
ones amongst b,...b,_1.

e The extra bit is called the parity bit.

Computing Parity Bit

ob, =b,0obi®...b,_1

e Where o is the XOR function.

e Parallel data: combinatorial XOR tree.
e Serial data: XOR gate and register bit.

Slide 5



Checking Parity

o Y = b0®b1®...bn
o If Y == 1 single-bit error detected.

e Do something sensible if error detected.

When to Use Parity

e Is failure mechanism a good fit for parity?

e Good example: memory array, each b, on
a different chip.

e Bad example: network port that sends all
zeros if power fails!

Slide 6



Simple Error Correction

Problem: Send an N bit quantity b, ... b,_1.
Give the receiver a way to detect and correct
a single-bit error.

Hamming Codes

e Take overlapping subsets of b, ... b,_1.

e Compute one parity bit for each subset.

e Send M bits: N data bits and K parity
bits.

e With enough parity bits, you can ID a
flipped data bit.

e Receiver computes a checkword that is 0
(no errors) or whose value is the bit position
of the error.

e Complement the bit position of the error
to fix.

e R. Hamming, 1950.

Slide 7



Hamming Codes in Detail

Definitions

e N data bits b,...b,,_1.
e K parity bits p,...pr_1.
e )M total bits ¢1...cyy.

e The c¢’s are numbered starting from one.

Step 1: Assign b;’s and p;’s to ¢;

e Assign each b; and p; only once.
e First assign cy, then c,, etc.

e Assign ¢; to a parity bit if ¢ a power of
two.

e Elsewise assign c; to a data bit.

e Stop when no more data bits left to assign.

Slide 8



Assignment Example

Given N =4: b,...bs

C1 = Do- (20 ==1)
ca = p1. (21 ==2).
c3 = b,.
cy = p3. (22 ==4).
cs = by.
ce = bo.

c; = b3. (last b; used)

Observations

o N=4 K=3M=443=17
e For large N, K ~ logs(N).
e This is a good thing.

Slide 9



Step 2: Compute Parity Bits

Recall from introduction ...

e Take overlapping subsets of the bits.

e Compute one parity bit for each subset.

The questions:

e How to take the subsets from c¢;...cy”?

Algorithm:

e Write c subscripts in binary.

e Subsets have a 1 in a particular bit posi-
tion.

e FEach subset has only one p;.
e Set p; to XOR of subset data bits.

Slide 10



Parity Computation Example

Recall M =7
C1 = Cpo1 = Po
Co = Cp10 = P1
c3 = co11 = b,
C4 = C100 = P3
cs = c101 = by
ce = C110 = by

cr = c111 = b3

Subsets
(647 Cs, Cg, C7) —— (p37 b17 b27 b3)
(627 C3, Co, C7) —— (p17 b07 b27 b3)

(Cl7 3, Cs, C7) —— (p07 b07 bl) b3)

To Compute Parity

e XOR data bits of the subset.

e Assign to parity bit of the subset.
e Flach subset has one parity bit by design.

Slide 11



Step 3: Correct Errors on Reception

Recall from introduction ...
e With enough parity bits, you can ID a

flipped data bit.

e Receiver computes a checkword that is 0
(no errors) or whose value is the bit position
of the error.

The Question:

e How to compute the checkword?

Algorithm:

e Break data into subsets.

e If subset contains p;, set w; to XOR of all
subset members.

e Checkword = wg+2*wy +4 *xwy + ...
e If checkword is zero, no errors.

e If checkword is nonzero, flip bit ccheckword-

Slide 12



Checkword Computation Example

C1 = Cpo1 = Po
Co = Cp10 = P1
c3 = co11 = by
C4 = C100 = D3
cs = c101 = b1
ce = C110 = by

cy = c111 = by
Subsets
(647 Cs, Cq, C7) —— (p37 b17 b27 b3)

(627 C3, Ce, C7) —— (p17 b07 627 b3)

(Cl7 C3, Cs, C7) —— (p07 b07 b17 b3)

To Compute Checkword

Wy = C40C50CedC7 = p3®byebyebs
W1 = C29C30C50Cy = P1ob,@bye b3
Wy =C19C39C59C7 = Pyob,o by ebs
Checkword = wy + 2 x w1 + 4 * wo

Slide 13



Hamming Code Epilogue

Why Does It Work?

e Uses binary code to advantage.

e If checkword not zero, a bit must be
wrong.

e Fach w; = 0 removes some bits from sus-
picion.

e Whichever bit is left must be wrong.

e If a bit is wrong, only one way to make it
right!

Help! I’'m Confused!

e Its normal to be confused after seeing it
just once.

e Print these slides, reread.

Slide 14



Detecting Multiple Errors

For Use When:

¢ Sending packets of data over an unreliable
medium.

e Most of the time, bits arrive pertectly.

e Sometimes, many bits are corrupted.

e Need to detect corruption, request a re-
send.

e Parity too weak: multi-bit corruption is
common.

Example Applications:

e Fthernet Packets

e Internet Protocol Datagrams

Slide 15



Basic Idea: Checksums

e Given a data packet of IV bits.

e Compute an M bit checksum word on
data

e Send M checksum bits and /N data bits.

e Receiver also computes checksum on
packet.

e Packet corrupt if checksums are different.

e Parity is a very weak 1-bit checksum.

Desirable Checksum Properties

e N may vary packet by packet, M is fixed.
e Algorithm should be easy to compute.

e Algorithm and M chosen to match appli-
cation.

Slide 16



Example: Cyclic Redundancy Check (CRC)

e Used in Ethernet Packets (M = 32).
e Ethernet P(undetected error) = 1/2%

e Less than one in a billion.

The Basic Idea

e Treat data packet as an /N bit number.
e Divide number by a constant.

e The “remainder” of the division is the
checksum.
But Division i1s Slow!

e Solution: use a number system where di-
vision is fast.

e Modulo 2 Arithmetic.

Slide 17



Modulo 2 Arithmetic

e + is bit-wise XOR (no carries).
e - is bit-wise XOR (no borrows).
e * is bit-wise AND (no carries).

e Division uses - and * above (no borrows).

Not an Ad-hoc Scheme!

e Operations define a finite (Galois) field.
e Associative and distributive properties.
e + and * identities and inverses.

e Ops map one N bit word to another N bit
word.

Slide 18



1001) 101110000

Modulo 2 Division

101011

G «—

—
-
-
—

»D

Slide 19



CRC Algorithm In Detail

e D is the N-bit data word to be sent.
e We compute M-bit checksum word R.

e Send concatenation: 2™ x D + R

Computing Checksum
e Compute (2M x D)/G =Q + R/G

e Fthernet G = 100000100110000010001110110110111

e Checksum is remainder R.

On Receipt

e Divide (2 x D + R) by G

e 2M x D)/G + (R/G)

e From above: @ + (R/G) + (R/G)
e Rewrite: Q + (R/G) — (R/G)

e Remainder should be zero! If not, corrupt.

Slide 20



CRC Hardware

14

13

12

10

|

a

=

&

5

3

4

=

11

e Serial dividend flows from b box.
e Flip-flops hold 16-bit remainder R.

e 17-bit divisor G = 10001000000100001

e Input XOR is first and last 1.

e T'wo middle 1’s map to middle XORs.

Preparing Checksum

e Clear flip-flops.

e Append 16 zeros to N-bit data D

e 16 + /N clocks to enter data.

e Remainder R sits in flip-flops.

Upon Receipt of 2'x D + R

e Clear flip-flops.
e 16 + N clocks to enter data.

e A non-zero flip-flop flags an error.

Slide 21



How Does It Work?

e The secret: 1t doesn’t work for all divisors.
e Only for numbers with “cyclic” property.

e Theoretical background needed to go fur-
ther.

e Linear Feedback Shift Registers

e Also used for random number generation.

In Conclusion

e Error coding is where math meets logic.
e Modulo 2 bit-serial circuits are powerful.

e Deep mathematics behind the gates.

Slide 22



