Chapter \#9: Finite State Machine Optimization

Contemporary Logic Design

Randy H. Katz University of California, Berkeley

July 1993

- Procedures for optimizing implementation of an FSM

State Reduction
State Assignment

Motivation

Basic FSM Design Procedure:

(1) Understand the problem
(2) Obtain a formal description
(3) Minimize number of states
(4) Encode the states
(5) Choose FFs to implement state register
(6) Implement the FSM

Next Chapter

Motivation

State Reduction

Odd Parity Checker: two alternative state diagrams

- Identical output behavior on all input strings
- FSMs are equivalent, but require different implementations
- Design state diagram without concern for \# of states, Reduce later

Motivation

State Reduction (continued)
Implement FSM with fewest possible states

- Least number of flipflops
- Boundaries are power of two number of states
- Fewest states usually leads to more opportunities for don't cares
- Reduce the number of gates needed for implementation

State Reduction

Goal
Identify and combine states that have equivalent behavior
Equivalent States: for all input combinations, states transition to the same or equivalent states

Odd Parity Checker: S0, S2 are equivalent states
Both output a 0
Both transition to S1 on a 1 and self-loop on a 0

Algorithmic Approach

- Start with state transition table
- Identify states with same output behavior
- If such states transition to the same next state, they are equivalent
- Combine into a single new renamed state
- Repeat until no new states are combined

State Reduction

Row Matching Method
Example FSM Specification:
Single input X, output Z
Taking inputs grouped four at a time, output 1 if last four inputs were the string 1010 or 0110

Example I/O Behavior:

$$
\begin{aligned}
& X=00100110110010100011 \ldots \\
& Z=00000001000000010000 \ldots
\end{aligned}
$$

Upper bound on FSM complexity:
Fifteen states (1+2+4+8)
Thirty transitions (2+4+8+16)
sufficient to recognize any binary string of length four!

State Reduction

Row Matching Method

State Diagram for Example FSM:

State Reduction

Row Matching Method
Initial State Transition Table:

	Next State				Output	
Input Sequence	Present State		$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	
Res	$\mathrm{X}=1$					
Reset	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	0	0	
0	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	0	0	
1	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	0	0	
00	$\mathrm{~S}_{3}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	0	0	
01	$\mathrm{~S}_{4}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$	0	0	
10	$\mathrm{~S}_{5}$	$\mathrm{~S}_{11}$	$\mathrm{~S}_{12}$	0	0	
11	$\mathrm{~S}_{6}$	$\mathrm{~S}_{13}$	$\mathrm{~S}_{14}$	0	0	
000	$\mathrm{~S}_{7}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
001	$\mathrm{~S}_{8}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
010	$\mathrm{~S}_{9}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
011	$\mathrm{~S}_{10}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	1	0	
100	$\mathrm{~S}_{11}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
101	$\mathrm{~S}_{12}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	1	0	
110	$\mathrm{~S}_{13}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
111	$\mathrm{~S}_{14}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	

State Reduction

Row Matching Method

Initial State Transition Table:

					Next State	
Output						
Input Sequence	Present State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$	
Reset	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	0	0	
0	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	0	0	
1	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	0	0	
00	$\mathrm{~S}_{3}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	0	0	
01	$\mathrm{~S}_{4}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$	0	0	
10	$\mathrm{~S}_{5}$	$\mathrm{~S}_{11}$	$\mathrm{~S}_{12}$	0	0	
11	$\mathrm{~S}_{6}$	$\mathrm{~S}_{13}$	$\mathrm{~S}_{14}$	0	0	
000	$\mathrm{~S}_{7}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
001	$\mathrm{~S}_{8}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
010	$\mathrm{~S}_{9}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
011	$\mathrm{~S}_{10}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	1	0	
100	$\mathrm{~S}_{11}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
101	$\mathrm{~S}_{12}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	1	0	
110	$\mathrm{~S}_{13}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
111	$\mathrm{~S}_{14}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	

Row Matching Method

	Next State				Output	
Input Sequence	Present State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$	
Reset	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	0	0	
0	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	0	0	
1	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	0	0	
00	$\mathrm{~S}_{3}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	0	0	
01	$\mathrm{~S}_{4}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$	0	0	
10	$\mathrm{~S}_{5}$	$\mathrm{~S}_{11}$	$\mathrm{~S}_{10}$	0	0	
11	$\mathrm{~S}_{6}$	$\mathrm{~S}_{13}$	$\mathrm{~S}_{14}$	0	0	
000	$\mathrm{~S}_{7}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
001	$\mathrm{~S}_{8}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
010	$\mathrm{~S}_{9}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
011 or 101	S_{10}^{\prime}	S_{0}	$\mathrm{~S}_{0}$	1	0	
100	$\mathrm{~S}_{11}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
110	$\mathrm{~S}_{13}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	
111	$\mathrm{~S}_{14}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	

State Reduction

Row Matching Method

Input Sequence	Present State	Next State		Output	
		X=0	$\mathrm{X}=1$	X=0	
Reset	S_{0}	S_{1}	S_{2}	0	0
0	S_{1}	S_{3}	S_{4}	0	0
1	S_{2}	S_{5}	S_{6}	0	0
00	S_{3}	S_{7}	S_{8}	0	0
01	S_{4}	S_{9}	S_{10}^{\prime}	0	0
10	S_{5}	S_{11}	S_{10}	0	0
11	S_{6}	S_{13}	S 14	0	0
000	S_{7}	S_{0}	S_{0}	0	0
001	S_{8}	S_{0}	S_{0}	0	0
010	S_{9}	S_{0}	S_{0}	0	0
011 or 101	S_{10}	S_{0}	S_{0}	1	0
100	S_{11}	S_{0}	S_{0}	0	0
110	S_{13}	S_{0}	S_{0}	0	0
111	S_{14}	S_{0}	S_{0}	0	0

State Reduction

					Next			State			Output	
Input Sequence	Present State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$							
Reset	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	0	0							
0	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	0	0							
1	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	0	0							
00	$\mathrm{~S}_{3}$	$\mathrm{~S}_{7}^{\prime}$	S_{7}^{\prime}	0	0							
01	$\mathrm{~S}_{4}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{10}^{10}$	0	0							
10	$\mathrm{~S}_{5}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{10}$	0	0							
11	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}^{1}$	$\mathrm{~S}_{7}^{\prime}$	0	0							
not (011 or 101)	S_{7}^{\prime}	S_{0}	$\mathrm{~S}_{0}$	0	0							
011 or 101	$\mathrm{~S}_{10}^{\prime}$	S_{0}	$\mathrm{~S}_{0}$	1	0							

State Reduction

Input Sequence		Next State		Output	
	Present State	X=0	X=1	X=0	$X=1$
Reset	S_{0}	S_{1}	S_{2}	0	0
0	S_{1}	S_{3}	S_{4}	0	0
1	S_{2}	S_{5}	S_{6}	0	0
00	S_{3}	S_{7}^{1}	S_{7}^{1}	0	0
01	S_{4}	S_{7}^{1}	S_{10}^{\prime}	0	0
10	S_{5}	S_{7}	S_{10}^{\prime}	0	0
11	S_{6}	S_{7}^{1}	S_{7}^{\prime}	0	0
not (011 or 101)	S_{7}^{\prime}	S_{0}	So	0	0
011 or 101	S_{10}^{\prime}	S_{0}	So	1	0

State Reduction

Contemporary Logic Design
Row Matching Method

Final Reduced State Transition Table

Input Sequence		Next State		Output	
	Present State	$\mathrm{X}=0$	$\mathrm{X}=1$	X=0	$\mathrm{X}=1$
Reset	S0	S1	S2	0	0
0	S1	S3'	S4'	0	0
1	S2	S4'	S3'	0	0
00 or 11	S3'	S7'	S7'	0	0
01 or 10	S4'	S7'	S10'	0	0
not (011 or 101)	S7'	S0	S0	0	0
011 or 101	S10'	S0	SO	1	0

© R.H. Katz Transparency No. 9-15

State Reduction

Row Matching Method

- Straightforward to understand and easy to implement
- Problem: does not allows yield the most reduced state table!

Example: 3 State Odd Parity Checker

Next State			
Present State	$\mathrm{X}=0$	$\mathrm{X}=1$	Output
S_{0}	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	1
$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	0

No way to combine states S0 and S2 based on Next State Criterion!

Implication Chart Method
New example FSM:
Single input X, Single output Z
Output a 1 whenever the serial sequence 010 or 110 has been observed at the inputs

State transition table:

		Next State		Output	
Input Sequence	Present State	$\mathrm{X}=0$		$\mathrm{X}=1$	$\mathrm{X}=0$
$\mathrm{R}=1$					
Reset	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	0	0
0	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	0	0
1	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	0	0
00	$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0
01	$\mathrm{~S}_{4}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	1	0
10	$\mathrm{~S}_{5}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0
11	$\mathrm{~S}_{6}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	1	0

State Reduction

Enumerate all possible combinations of states taken two at a time

Next States Under all Input Combinations

Naive Data Structure:
Xij will be the same as Xji Also, can eliminate the diagonal

Implication Chart

State Reduction

Implication Chart

Filling in the Implication Chart
Entry Xij — Row is $\mathbf{S i}$, Column is $\mathbf{S j}$
Si is equivalent to Sj if outputs are the same and next states are equivalent

Xij contains the next states of Si, Sj which must be equivalent if Si and Sj are equivalent

If Si, Sj have different output behavior, then Xij is crossed out

Example:

S0 transitions to S1 on 0, S2 on 1;
S1 transitions to S3 on 0, S4 on 1;
So square $\mathrm{X}<0,1>$ contains entries $\mathrm{S} 1-\mathrm{S} 3$ (transition on zero) S2-S4 (transition on one)

S0	S1-S3
	S2-S4

State Reduction

Implication Chart Method

State Reduction

Implication Chart Method

Results of First Marking Pass
Second Pass Adds No New Information S3 and S5 are equivalent S4 and S6 are equivalent This implies that S1 and S2 are too!

Next State Output

Input Sequence	Present State	$X=0$	$X=1$	$X=0$	$X=1$
Reset	S_{0}	$\mathrm{~S}_{1}^{\prime}$	S_{1}^{\prime}	0	0
0 or 1	$\mathrm{~S}_{1}^{\prime}$	S_{3}^{\prime}	S_{4}^{\prime}	0	0
00 or 10	S_{3}^{\prime}	S_{0}	$\mathrm{~S}_{0}$	0	0
01 or 11	S_{4}^{\prime}	S_{0}	$\mathrm{~S}_{0}$	1	0

Multiple Input State Diagram Example

> State Diagram

Present	Next State				
State	00	01	10	11	
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	1
$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{5}$	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{4}$	1
$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	0
$\mathrm{~S}_{4}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	1
$\mathrm{~S}_{5}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{5}$	0

Symbolic State Diagram

State Reduction

Implication Chart Method
Does the method solve the problem with the odd parity checker?

S 0 is equivalent to S 2
since nothing contradicts this assertion!

State Reduction

Implication Chart Method

The detailed algorithm:

1. Construct implication chart, one square for each combination of states taken two at a time
2. Square labeled $\mathbf{S i}, \mathbf{S j}$, if outputs differ than square gets " X ". Otherwise write down implied state pairs for all input combinations
3. Advance through chart top-to-bottom and left-to-right. If square Si, Sj contains next state pair Sm, Sn and that pair labels a square already labeled " X ", then Si, Sj is labeled " X ".
4. Continue executing Step 3 until no new squares are marked with "X".
5. For each remaining unmarked square Si, Sj, then Si and Sj are equivalent.

State Assignment

When FSM implemented with gate logic, number of gates will depend on mapping between symbolic state names and binary encodings

4 states = $\mathbf{4}$ choices for first state, $\mathbf{3}$ for second, $\mathbf{2}$ for third, 1 for last $=24$ different encodings (4!)

Example for State Assignment: Traffic Light Controller

HG	HY	FG	FY
00	01	10	11
00	01	11	10
00	10	01	11
00	10	11	01
00	11	01	10
00	11	10	01
01	00	10	11
01	00	11	10
01	10	00	11
01	10	11	00
01	11	00	10
01	11	10	00

HG	HY	FG	FY
10	00	01	11
10	00	11	01
10	01	00	11
10	01	11	00
10	11	00	01
10	11	01	00
11	00	01	10
11	00	10	01
11	01	00	10
11	01	10	00
11	10	00	01
11	10	01	00

Inputs			Present State	Next State	Outputs		
C	TL	TS	$\mathrm{Q}_{1} \mathrm{Q}_{0}$	$\mathrm{P}_{1} \mathrm{P}_{0}$	ST	$\mathrm{H}_{1} \mathrm{H}_{0}$	$\mathrm{~F}_{1} \mathrm{~F}_{0}$
0	X	X	HG	HG	0	00	10
X	0	X	HG	HG	0	00	10
1	1	X	HG	HY	1	00	10
X	X	0	HY	HY	0	01	10
X	X	1	HY	FG	1	01	10
1	0	X	FG	FG	0	10	00
0	X	X	FG	FY	1	10	00
X	1	X	FG	FY	1	10	00
X	X	0	FY	FY	0	10	01
X	X	1	FY	HG	1	10	01

24 state assignments for the traffic light controller

Symbolic State Names: HG, HY, FG, FY

State Assignment

Pencil \& Paper Heuristic Methods
State Maps: similar in concept to K-maps
If state X transitions to state Y, then assign "close" assignments to X and Y

	Assignment		
State Name	Q_{2}	Q_{1}	Q_{0}
S_{0}	0	0	0
$\mathrm{~S}_{1}$	1	0	1
$\mathrm{~S}_{2}$	1	1	1
$\mathrm{~S}_{3}$	0	1	0
$\mathrm{~S}_{4}$	0	1	1
Assignment			

	Assignment		
State Name	Q_{2}		Q_{1}
Q_{0}			
$\mathrm{~S}_{0}$	0	0	0
$\mathrm{~S}_{1}$	0	0	1
$\mathrm{~S}_{2}$	0	1	0
$\mathrm{~S}_{3}$	0	1	1
$\mathrm{~S}_{4}$	1	1	1
Assignment			

State Assignment

Paper and Pencil Methods
Minimum Bit Distance Criterion

First Assignment Second Assignment
Transition Bit Changes Bit Changes

S0 to S1:
S0 to S2:
S1 to S3:
S2 to S3:
S3 to S4:
S4 to S1:
2
1
3 1
3
1
2 1
1
1
2
13
7

Traffic light controller: $\mathrm{HG}=00, \mathrm{HY}=01, \mathrm{FG}=11, \mathrm{FY}=10$ yields minimum distance encoding but not best assignment!

State Assignment

Paper \& Pencil Methods

Alternative heuristics based on input and output behavior as well as transitions:

Highest Priority

Medium Priority

Lowest Priority

Adjacent assignments to:
states that share a common next state (group 1's in next state map)
states that share a common ancestor state (group 1's in next state map)
states that have common output behavior (group 1's in output map)

State Assignment

Pencil and Paper Methods
Example: 3-bit Sequence Detector

Paper and Pencil Methods

State Assignment

Paper \& Pencil Methods
Another Example: 4 bit String Recognizer

Highest Priority: (S3', S4'), (S7', S10')
Medium Priority:
(S1, S2), 2x(S3', S4'), (S7', S10')
Lowest Priority:
0/0: (S0, S1, S2, S3', S4', S7') 1/0: (S0, S1, S2, S3', S4', S7')

State Assignment

Paper \& Pencil Methods

State Map

		01	11	10
0	So		S3'	S7'
1			S4'	S10'

		01	11	10
0	S0	S1	S3'	S7'
1		S2	S4'	S10'

(a)

(b)
$00=$ Reset $=\mathbf{S O}$
(S1, S2), (S3', S4'), (S7', S10') placed adjacently

Effect of Adjacencies on Next State Map

Current	Next State	
State	$\mathrm{X}=0$	X =
(S_{0}) 000	001	101
$\left(S_{1}\right) 001$	011	111
$\left(\mathrm{S}_{2}\right) 101$	111	011
$\left(S_{3}^{\prime}\right) 011$	010	010
(S') 111	010	110
(S_{7}^{\prime}) 010	000	000
$\left(S_{10}^{\prime}\right) 110$	000	000

First encoding exhibits a better clustering of 1 's in the next state map

