
Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-1

Chapter #9: Finite State
Machine Optimization

Contemporary Logic Design

Randy H. Katz
University of California, Berkeley

July 1993

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-2

Outline

• Procedures for optimizing implementation of an FSM

 State Reduction

 State Assignment

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-3

Motivation

Basic FSM Design Procedure:

 (1) Understand the problem

 (2) Obtain a formal description

 (3) Minimize number of states

 (4) Encode the states

 (5) Choose FFs to implement state register

 (6) Implement the FSM

This
Chapter!

Next Chapter

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-4

Motivation

State Reduction

Odd Parity Checker: two alternative state diagrams

 • Identical output behavior on all input strings

 • FSMs are equivalent, but require different implementations

 • Design state diagram without concern for # of states,
 Reduce later

0

S0
[0]

S1
[1]

S2
[0]

1

S0
[0]

S1
[1]

0
1

1

0

0

0

11

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-5

Motivation

State Reduction (continued)

Implement FSM with fewest possible states

 • Least number of flipflops

 • Boundaries are power of two number of states

 • Fewest states usually leads to more opportunities for don't cares

 • Reduce the number of gates needed for implementation

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-6

State Reduction
Goal

Identify and combine states that have equivalent behavior

Equivalent States: for all input combinations, states transition
 to the same or equivalent states

Odd Parity Checker: S0, S2 are equivalent states
 Both output a 0
 Both transition to S1 on a 1 and self-loop on a 0

Algorithmic Approach

• Start with state transition table

• Identify states with same output behavior

• If such states transition to the same next state, they are equivalent

• Combine into a single new renamed state

• Repeat until no new states are combined

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-7

State Reduction
Row Matching Method

Example FSM Specification:

Single input X, output Z
Taking inputs grouped four at a time, output 1 if last four inputs
were the string 1010 or 0110

Example I/O Behavior:

 X = 0010 0110 1100 1010 0011 . . .
 Z = 0000 0001 0000 0001 0000 . . .

Upper bound on FSM complexity:

 Fifteen states (1 + 2 + 4 + 8)

 Thirty transitions (2 + 4 + 8 + 16)

sufficient to recognize any binary string of length four!

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-8

State Reduction
Row Matching Method

State Diagram for Example FSM:

Reset

0/0 1/0

0/0 1/0 0/0 1/0

0/0 1/0 0/0 1/0 0/0 1/0 0/0 1/0

0/0 1/0 0/0 0/0
1/0 1/0

0/0
1/0

1/0
0/1

0/0
1/0

1/0 0/0 1/00/1

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-9

State Reduction
Row Matching Method

Initial State Transition Table:

Present State
S 0
S 1
S 2
S 3
S 4
S 5
S 6
S 7
S 8
S 9
S 10
S 1 1
S 12
S 13
S 14

Input Sequence
Reset

0
1

00
01
10
1 1

000
001
010
01 1
100
101
1 10
1 1 1

X =1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

X =0
S 1
S 3
S 5
S 7
S 9
S 1 1
S 13
S 0
S 0
S 0
S 0
S 0
S 0
S 0
S 0

X =1
S 2
S 4
S 6
S 8
S 10
S 12
S 14
S 0
S 0
S 0
S 0
S 0
S 0
S 0
S 0

X =0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0

Next State Output

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-10

State Reduction
Row Matching Method

Initial State Transition Table:

Present State
S 0
S 1
S 2
S 3
S 4
S 5
S 6
S 7
S 8
S 9
S 10
S 1 1
S 12
S 13
S 14

Input Sequence
Reset

0
1

00
01
10
1 1

000
001
010
01 1
100
101
1 10
1 1 1

X =1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

X =0
S 1
S 3
S 5
S 7
S 9
S 1 1
S 13
S 0
S 0
S 0
S 0
S 0
S 0
S 0
S 0

X =1
S 2
S 4
S 6
S 8
S 10
S 12
S 14
S 0
S 0
S 0
S 0
S 0
S 0
S 0
S 0

X =0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0

Next State Output

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-11

State Reduction
Row Matching Method

Present State
S 0
S 1
S 2
S 3
S 4
S 5
S 6
S 7
S 8
S 9
S ' 10
S 1 1
S 13
S 14

Input Sequence
Reset

0
1

00
01
10
1 1

000
001
010

01 1 or 101
100
1 10
1 1 1

Next State
X =0 X =1

S 1
S 3
S 5
S 7
S 9
S 1 1
S 13
S 0
S 0
S 0
S 0
S 0
S 0
S 0

S 2
S 4
S 6
S 8
S ' 10
S ' 10
S 14
S 0
S 0
S 0
S 0
S 0
S 0
S 0

X =0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

X =1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Output

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-12

State Reduction
Row Matching Method

Present State
S 0
S 1
S 2
S 3
S 4
S 5
S 6
S 7
S 8
S 9
S ' 10
S 1 1
S 13
S 14

Input Sequence
Reset

0
1

00
01
10
1 1

000
001
010

01 1 or 101
100
1 10
1 1 1

Next State
X =0 X =1

S 1
S 3
S 5
S 7
S 9
S 1 1
S 13
S 0
S 0
S 0
S 0
S 0
S 0
S 0

S 2
S 4
S 6
S 8
S ' 10
S ' 10
S 14
S 0
S 0
S 0
S 0
S 0
S 0
S 0

X =0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

X =1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Output

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-13

State Reduction
Row Matching Method

Present State
S 0
S 1
S 2
S 3
S 4
S 5
S 6
S 7 '

S ' 10

Input Sequence
Reset

0
1

00
01
10
1 1

not (01 1 or 101)
01 1 or 101

X =0
S 1
S 3
S 5

S 0
S 0

X =1
S 2
S 4
S 6

S 0
S 0

X =0
0
0
0
0
0
0
0
0
1

X =1
0
0
0
0
0
0
0
0
0

Next State Output

S 7 '
S 7 '
S 7 '
S 7 '

S 7 '
S ' 10
S ' 10
S 7 '

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-14

State Reduction
Row Matching Method

Present State
S 0
S 1
S 2
S 3
S 4
S 5
S 6
S 7 '

S ' 10

Input Sequence
Reset

0
1

00
01
10
1 1

not (01 1 or 101)
01 1 or 101

X =0
S 1
S 3
S 5

S 0
S 0

X =1
S 2
S 4
S 6

S 0
S 0

X =0
0
0
0
0
0
0
0
0
1

X =1
0
0
0
0
0
0
0
0
0

Next State Output

S 7 '
S 7 '
S 7 '
S 7 '

S 7 '
S ' 10
S ' 10
S 7 '

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-15

State Reduction
Row Matching Method

Final Reduced
State Transition Table

Final Reduced
State Transition Table

Corresponding State
Diagram

Corresponding State
Diagram

Input Sequence
Reset

0
1

00 or 11
01 or 10

not (011 or 101)
011 or 101

Present State
S0
S1
S2
S3'
S4'
S7'
S10'

X=0
S1
S3'
S4'
S7'
S7'
S0
S0

X=1
S2
S4'
S3'
S7'

S10'
S0
S0

Next State Output
X=0

0
0
0
0
0
0
1

X=1
0
0
0
0
0
0
0

Reset

S1

S3'

S7'

S2

S4'

S10'

0,1/0

0,1/0

0/0

0/0

1/0 1/0

1/0

1/0

1/00/1

S0

0/0

0/0

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-16

State Reduction
Row Matching Method

• Straightforward to understand and easy to implement

• Problem: does not allows yield the most reduced state table!

Example: 3 State Odd Parity Checker

No way to combine states S0 and S2
based on Next State Criterion!

No way to combine states S0 and S2
based on Next State Criterion!

Present State
S 0
S 1
S 2

Next State
X =0
S 0
S 1
S 2

X =1
S 1
S 2
S 1

Output
0
1
0

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-17

State Reduction
Implication Chart Method

New example FSM:

 Single input X, Single output Z

 Output a 1 whenever the serial sequence 010 or 110 has been
 observed at the inputs

State transition table:

Present State
S 0
S 1
S 2
S 3
S 4
S 5
S 6

Input Sequence
Reset

0
1

00
01
10
1 1

X =1
0
0
0
0
0
0
0

Next State Output
X =0
S 1
S 3
S 5
S 0
S 0
S 0
S 0

X =1
S 2
S 4
S 6
S 0
S 0
S 0
S 0

X =0
0
0
0
0
1
0
1

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-18

State Reduction
Implication Chart Method

Enumerate all possible combinations of states taken two at a time

Naive Data Structure:
Xij will be the same as Xji
Also, can eliminate the diagonal

Implication Chart

Next States
Under all
Input
Combinations

S0

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5 S6

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-19

State Reduction
Implication Chart

Filling in the Implication Chart

Entry Xij — Row is Si, Column is Sj

Si is equivalent to Sj if outputs are the same and
 next states are equivalent

Xij contains the next states of Si, Sj which must be equivalent if
 Si and Sj are equivalent

If Si, Sj have different output behavior, then Xij is crossed out

Example:
 S0 transitions to S1 on 0, S2 on 1;
 S1 transitions to S3 on 0, S4 on 1;

 So square X<0,1> contains entries S1-S3 (transition on zero)
 S2-S4 (transition on one)

S1-S3
S2-S4

S0

S1

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-20

State Reduction
Implication Chart Method

Starting Implication Chart

S2 and S4
have different
I/O behavior

This implies that
S1 and S0 cannot

be combined

S1

S2

S3

S4

S5

S6
S0 S1 S2 S3 S4 S5

S1-S3
S2-S4

S1-S5
S2-S6

S3-S5
S4-S6

S1-S0
S2-S0

S3-S0
S4-S0

S5-S0
S6-S0

S1-S0
S2-S0

S3-S0
S4-S0

S5-S0
S6-S0

S0-S0
S0-S0

S0-S0
S0-S0

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-21

State Reduction
Implication Chart Method

Results of First Marking Pass

Second Pass Adds No New Information
S3 and S5 are equivalent
S4 and S6 are equivalent
This implies that S1 and S2 are too!

Reduced State
Transition Table
Reduced State
Transition Table

Input Sequence
Reset

 0 or 1
00 or 10
01 or 1 1

Present State
S 0
S 1 '
S 3 '
S 4 '

X =0
S 1 '
S 3 '
S 0
S 0

X =1
S 1 '
S 4 '
S 0
S 0

X =0
0
0
0
1

X =1
0
0
0
0

Next State Output

S0-S0
S0-S0

S3-S5
S4-S6

S0-S0
S0-S0

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-22

State Reduction
Multiple Input State Diagram Example

State Diagram

Symbolic State Diagram

Present
State

S 0
S 1
S 2
S 3
S 4
S 5

Next State
00
S 0
S 0
S 1
S 1
S 0
S 1

01
S 1
S 3
S 3
S 0
S 1
S 4

10
S 2
S 1
S 2
S 4
S 2
S 0

1 1
S 3
S 5
S 4
S 5
S 5
S 5

Output

1
0
1
0
1
0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

10

01
11

00

00

01

11
10

10 01

11
00

10

00

01

11

00

11
10

01

10

1101

00

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-23

State Reduction
Multiple Input Example

Implication Chart

Minimized State Table

Present
State

S 0 '
S 1
S 2
S 3 '

Next State
00
S 0 '
S 0 '
S 1
S 1

01
S 1
S 3 '
S 3 '
S 0 '

10
S 2
S 1
S 2
S 0 '

1 1
S 3 '
S 3 '
S 0 '
S 3 '

Output

1
0
1
0

S1

S2

S3

S4

S5

S0-S1
S1-S3
S2-S2
S3-S4

S0-S0
S1-S1
S2-S2
S3-S5

S0

S0-S1
S3-S0
S1-S4
S5-S5

S0-S1
S3-S4
S1-S0
S5-S5

S1

S1-S0
S3-S1
S2-S2
S4-S5

S2

S1-S1
S0-S4
S4-S0
S5-S5

S3 S4

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-24

State Reduction
Implication Chart Method

Does the method solve the problem with the odd parity checker?

Implication ChartImplication Chart

S0 is equivalent to S2
since nothing contradicts this assertion!

S 1

S 2

S 0 S 1

S 0 - S 2
S 1 - S 1

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-25

State Reduction

Implication Chart Method
The detailed algorithm:

1. Construct implication chart, one square for each combination of
states taken two at a time

2. Square labeled Si, Sj, if outputs differ than square gets "X".
Otherwise write down implied state pairs for all input
combinations

3. Advance through chart top-to-bottom and left-to-right. If square
Si, Sj contains next state pair Sm, Sn and that pair labels a square
already labeled "X", then Si, Sj is labeled "X".

4. Continue executing Step 3 until no new squares are marked with
"X".

5. For each remaining unmarked square Si, Sj, then Si and Sj are
equivalent.

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-26

State Assignment

When FSM implemented with gate logic, number of gates will depend on
mapping between symbolic state names and binary encodings

4 states = 4 choices for first state, 3 for second, 2 for third, 1 for last
 = 24 different encodings (4!)

Example for State Assignment: Traffic Light Controller

Symbolic State Names: HG, HY, FG, FY

24 state assignments
for the traffic light

controller

HG
00
00
00
00
00
00
01
01
01
01
01
01

HY
01
01
10
10
1 1
1 1
00
00
10
10
1 1
1 1

FG
10
1 1
01
1 1
01
10
10
1 1
00
1 1
00
10

FY
1 1
10
1 1
01
10
01
1 1
10
1 1
00
10
00

HG
10
10
10
10
10
10
1 1
1 1
1 1
1 1
1 1
1 1

HY
00
00
01
01
1 1
1 1
00
00
01
01
10
10

FG
01
1 1
00
1 1
00
01
01
10
00
10
00
01

FY
1 1
01
1 1
00
01
00
10
01
10
00
01
00

C
0
X
1
X
X
1
0
X
X
X

TL
X
0
1
X
X
0
X
1
X
X

TS
X
X
X
0
1
X
X
X
0
1

Inputs Present State
Q 1 Q 0

HG
HG
HG
HY
HY
FG
FG
FG
FY
FY

Next State
P 1 P 0
HG
HG
HY
HY
FG
FG
FY
FY
FY
HG

Outputs
ST
0
0
1
0
1
0
1
1
0
1

H 1 H 0
00
00
00
01
01
10
10
10
10
10

F 1 F 0
10
10
10
10
10
00
00
00
01
01

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-27

State Assignment
Pencil & Paper Heuristic Methods

State Maps: similar in concept to K-maps
 If state X transitions to state Y, then assign "close" assignments
 to X and Y

S 0

S 1 S 2

S 3

S 4

0 1

Q 1 Q 0
00 01 1 1 10

0

1

Q 2
S 0 S 4 S 3

S 1 S 2

State Map

State Name
S 0
S 1
S 2
S 3
S 4

Assignment
Q 2
0
1
1
0
0

Q 1
0
0
1
1
1

Q 0
0
1
1
0
1

Assignment

Q 1 Q 0
00 01 1 1 10 Q 2

0

1

S 0 S 1 S 3 S 2

S 4

State Map

State Name
S 0
S 1
S 2
S 3
S 4

Q 2
0
0
0
0
1

Q 1
0
0
1
1
1

Q 0
0
1
0
1
1

Assignment

Assignment

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-28

State Assignment
Paper and Pencil Methods

Minimum Bit Distance Criterion

13 7

Traffic light controller: HG = 00, HY = 01, FG = 11, FY = 10
 yields minimum distance encoding but not best assignment!

Transition
S0 to S1:
S0 to S2:
S1 to S3:
S2 to S3:
S3 to S4:
S4 to S1:

First Assignment
Bit Changes

2
3
3
2
1
2

Second Assignment
Bit Changes

1
1
1
1
1
2

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-29

State Assignment
Paper & Pencil Methods

Alternative heuristics based on input and output behavior as well
 as transitions:

Adjacent assignments to:

states that share a common next state
(group 1's in next state map)

states that share a common ancestor state
(group 1's in next state map)

states that have common output behavior
(group 1's in output map)

Highest Priority

Medium Priority

Lowest Priority

i/j i/k

i/j i/j

α

α

α

β

β

β

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-30

State Assignment
Pencil and Paper Methods

Example: 3-bit Sequence Detector

Highest Priority: (S3', S4')

Medium Priority: (S3', S4')

Lowest Priority:
 0/0: (S0, S1', S3')
 1/0: (S0, S1', S3', S4')

Reset

S0

0,1/0

0,1/0
1/0

S1'
0/0

0/1,
1/0

S3' S4'

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-31

State Assignment
Paper and Pencil Methods

Reset State = 00

Highest Priority Adjacency

Not much difference in these two
assignments

Not much difference in these two
assignments

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-32

State Assignment
Paper & Pencil Methods

Highest Priority: (S3', S4'), (S7', S10')

Medium Priority:
 (S1, S2), 2x(S3', S4'), (S7', S10')

Lowest Priority:
 0/0: (S0, S1, S2, S3', S4', S7')
 1/0: (S0, S1, S2, S3', S4', S7')

Another Example: 4 bit String Recognizer

Reset

S1

S3'

S7'

S2

S4'

S10'

0,1/0

0,1/0

0/0

0/0

1/0 1/0

1/0

1/0

1/00/1

S0

0/0

0/0

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-33

State Assignment
Paper & Pencil Methods

00 = Reset = S0

(S1, S2), (S3', S4'), (S7', S10')
 placed adjacently

State Map

Q1 Q0
Q2

0

1

00 01 11 10

S0

Q1 Q0
Q2

0

1

00 01 11 10

S0 S3'

S4'

Q1 Q0
Q2

0

1

00 01 11 10

S0 S3'

S4'

S7'

S10'

Q1 Q0
Q2

0

1

00 01 11 10

S0 S1 S3'

S2 S4'

S7'

S10'

Q1 Q0
Q2

0

1

00 01 11 10

S0

Q1 Q0
Q2

0

1

00 01 11 10

S0

S7' S10'

Q1 Q0
Q2

0

1

00 01 11 10

S0 S3'

S4'S7' S10'

Q1 Q0
Q2

0

1

00 01 11 10

S0 S1 S3'

S2 S4'S7' S10'

(a) (b)

Contemporary Logic Design
FSM Optimization

© R.H. Katz Transparency No. 9-34

State Assignment
Effect of Adjacencies on Next State Map

First encoding exhibits a better clustering of 1's in the next state map

Q 2 Q 1

Q 0 X

P 0

Q 2 Q 1

Q 0 X

P 0

Q 2 Q 1

Q 0 X

P 1 P 2

P 1

Q 2 Q 1

Q 0 X
Q 2 Q 1

Q 0 X

(S 0)
(S 1)
(S 2)
(S 3 ')
(S 4 ')
(S 7 ')
(S ' 10)

0

0

00

01

00 01 1 1 10

1 1

10

0

0

0

0

0

0 1

1 0

0

X

X

P 2

00

01

00 01 1 1 10

1 1

10

0

1

1

1

1

1

1

X

X

00

01

00 01 1 1 10

1 1

10

1

1

1

1

0

0

0

0

0

0

0

0

X

X

1

1

(S 0)
(S 1)
(S 2)
(S 3 ')
(S 4 ')
(S 7 ')
(S ' 10)

000
001
101
01 1
1 1 1
010
1 10

X = 0
001
01 1
1 1 1
010
010
000
000

X = 1
101
1 1 1
01 1
010
1 10
000
000

Current
State

Next State

000
001
010
01 1
100
101
1 10

X = 0
001
01 1
100
101
101
000
000

X = 1
010
100
01 1
101
1 10
000
000

Current
State

Next State

1

1

0

0

1

1

0

0 0

0

1

Q 2 Q 1

Q 0 X
00

01

00 01 1 1 10

1 1

10

0

0

0

0

1

0 0

1 1

1

1

1

00

01

00 01 1 1 10

1 1

10

0

0

1

X

X

0

0

0

1

00

01

00 01 1 1 10

1 1

10

1

0

0

1

0

1

1

1

0

0

X

X

1

0

0

0

X

0

0

X

0

0

0

0 1

