Professor Fearing
EECS 150/Problem Set 10
Fall 1997

Solutions by Chris Eng, cje@cory.eecs.berkeley.edu

Problem 1 (30 pts)

We want to emulate a 2-bit counter using the provided microprogrammed control unit. Important things to notice about the MCU: 1) The top bit of the instruction word enables either the input mux or the clock enable of the output register, 2) Bits 5 and 6 of the instruction word specify which control signal(s) are selected by the mux, 3) The bottom two bits of the instruction word specify the two counter bits. Based on the given specifications regarding the control signals CEN and UP, we can get a rough idea of how the microcode should work.

After each counter transition, the program must first latch a value into Q1 and Q0. Then, it should check to see whether or not the counter is actually enabled – if not, it should remain in its current state until CEN is asserted. Assuming the counter is on, it should increment if the CEN&UP signal is asserted or decrement if it is deasserted. One possible implementation of the microcode is shown below. The notation jmp(x) means to jump to the specified label if signal x is asserted.

Label
ROM Address
Mnemonic Form
Numeric Form (O[7:0])
Hex Data

Start00
00000
00 (Output Register
0xxxxx00
00

Hold00
00001
jmp(CEN/) Hold00
10100001
A1

00010
jmp(CEN&UP) Start01
10000100
84

00011
jmp Start11
11101100
EC

Start01
00100
01 (Output Register
0xxxxx01
01

Hold01
00101
jmp(CEN/) Hold01
10100101
A5

00110
jmp(CEN&UP) Start10
10001000
88

00111
jmp Start00
11100000
E0

Start10
01000
10 (Output Register
0xxxxx10
02

Hold10
01001
jmp(CEN/) Hold10
10101001
A9

01010
jmp(CEN&UP) Start11
10001100
8C

01011
jmp Start01
11100100
E4

Start11
01100
11 (Output Register
0xxxxx11
03

Hold11
01101
jmp(CEN/) Hold11
10101101
AD

01110
jmp(CEN&UP) Start00
10000000
80

01111
jmp Start10
11101000
E8

The numeric form of each instruction is easily realized once the mnemonic instructions have been determined. We can simplify the task by breaking it up into several parts. First, we consider the top bit. If a value is being loaded into the output register, we know that O7 must be 0; otherwise, since the rest of the instructions are jumps (possibly requiring an explicit load into the ROM Address counter), we must set O7 to 1. The next two bits, O6 and O5, select the signal coming out of the 4-input mux. All we need to do is select the control signal which corresponds to the jump being performed. For example, the instruction “jmp(CEN/) Hold00” uses CEN/ as its jump criteria; thus, we would set O6 and O5 to 0 and 1, respectively. This way, if CEN=0, the jump is carried out and a new value is loaded into the ROM Address counter. If CEN=1, the jump does not happen and the Address counter simply increments by one. Finally, the last five bits of each instruction word correspond to jump locations, which are easily extracted from the chart. The exception to this is when the output register is being written, in which case we only care that the bottom two bits are written correctly to Q1 and Q0. The corresponding ROM data (hex) is also shown in the table. In this case, we have replaced the don’t-care values (x) with 0’s.

A timing diagram for this microcode is shown on the following page. We start out in the initial state in which Q1 and Q0 are both set to 0. We count up to Q1Q0=10, then deassert the UP signal so that the counter will count down. When we reach Q1Q0=01, we deassert CEN, causing the counter to hold in the current state. After a few more cycles, we assert CEN again, allowing the counter to continue decrementing. It counts down to Q1Q0=10, at which point we assert UP, telling the counter to count upward once again. The microprogram counter (ROM Address) is also shown on the timing diagram, in decimal form.

CLK

UP

CEN

Q1

Q0

Address

0
1
2
4
5
6
8
9
10
11...

CLK

UP

CEN

Q1

Q0

Address
...11
4
5
5
5
6
7
0
1
2
3...

CLK

UP

CEN

Q1

Q0

Address
...3
12
13
14
15
8
9
10
12
13
14...

You may have noticed that the timing of the counter exhibits some asymmetry due to the structure of the microprogram. That is, when UP is asserted, the counter value is incremented every three clock cycles, but when UP is deasserted, the counter value is decremented every four clock cycles. This happens because of the extra “jmp” instruction that has to be processed when the counter is counting down. If for some reason we needed the timing to be the same for counting up and down, we could insert extra states in the microcode in order to lengthen up-counting to four clock cycles. This could be implemented something like this:

Label
ROM Address
Mnemonic Form

Nop00
00000
no-op [jmp Start00]

Start00
00001
00 (Output Register

Hold00
00010
jmp(CEN/) Hold00

00011
jmp(CEN&UP) Nop01

00100
jmp Start11

Nop01
00101
no-op [jmp Start01]

Start01
00110
01 (Output Register

Hold01
00111
jmp(CEN/) Hold01

01000
jmp(CEN&UP) Nop10

01001
jmp Start00

Nop10
01010
no-op [jmp Start10]

(etc...)

Using this implementation of the microprogram, we see that instead of jumping directly to a given “Start” state during a counter increment, the program jumps to a no-op state, where it basically wastes a clock cycle before continuing as before. This change would fit easily into the ROM, since it only requires one extra microinstruction per counter state.

[image: image1.png]2:4 Decoder

Y0 — RO to BusA
AQ Y1 — R1 to BusA
CLK —>
| 2-bit Register At Y2 —R2 to BusA
612 Y3 — R3 to BusA
8-bit Counter ROM anlJ
9 3:8 Decoder
Q10.9)———4— Y0 — RO to BusB
12 Y1 —R1 to BusB
Q7.0 D11.0 » D11.0 3 A0 Y2 —R2 to BusB
LOAD 8 Q8.6 / A Y3 —R3to BusB
h Y41— IR to BusB
D7.0 L »A7.0 4 AZ
Y5 PC to BusB
Q5.2 ﬁL
Y6 MBR to BusB
Q1.0|— Y7L MAR to M
8 ROM7.0 _| 4:16 Decoder
cK BusC to RO
— BusC to
i? — BusC to R1
Yo [— BusC to R2
y3 [BusCtoR3
v4 —BusCto IR
A0 Y5 —BusC to MAR
A Y6 —BusC to MBR
A2 Y7 —BusB to SHFT
A3 Y8 —BusB to PC
ﬁo — BusB to MAR
3 — M to MBR
ROM10..8 m; | MBR to
yi3[
Y14
Y15
Read— Memory L pemcs
Controller
2
Write — — MemWE » ALU Function[1:0]

Problem 2 (30 pts)

Now we will modify the MCU used in Problem 1. We are given a single 8Kx8 ROM which we will use to create an MCU with 15 output bits, 1024 microinstruction addresses, and 16 branch conditions. Since the ROM is only 8 bits wide, we now that each instruction now occupies 2 consecutive memory addresses. The MSB of the contents of the second address determines whether or not the instruction is a jump (jumps should always be to even addresses). On a jump, the contents of the first address and the bottom 2 bits of the second address contain the target address. Bits 6 through 3 determine which condition to use for branching. The instruction format is shown on the next page.

O15
O14
O13
O12
O11
O10
O9
O8
O7
O6
O5
O4
O3
O2
O1
O0

DO
1
Control Signals

JMP
0
Branch Variable

Branch Address

Problem 3 (35 pts)

Given the datapath in Figure Ex11.13, we want to create an MCU that could control the processor. We know, first of all, that there are two types of instruction that we should consider – branch instructions, in which the program counter jumps to a given location, and register transfer instructions, which operate sequentially. Looking at the datapath, we see that in each register transfer instruction, we will need to specify two source signals plus a destination register (if any). We will also need to select the function of the ALU. For branch instructions, we need to specify the branch condition as well as a target address.

First, we will figure out how many bits will be needed for a register transfer microinstruction. For the first output source, we can select between [R0, R1, R2, R3](ABus. For the second output, we will select from [R0, R1, R2, R3, IR, PC, MBR](BBus, as well as MAR(M. For the destination register, we will choose from CBus([R0, R1, R2, R3, IR, MAR, MBR], BBus([SHFT, PC, MAR], and M(MBR. Finally, we will assume that we have a very basic ALU that only performs the functions ADD, SUB, PASS A, and PASS B. The resulting register transfer instruction format is shown below.

Type
Source A
Source B
Destination
ALU Function

1
2
3
4
2

The “Type” field will be set to 1, designating that this is a register transfer instruction. For the remaining fields, we will use the following encoding:

Source A
Source B
Destination
ALU Function

00: R0(BusA
000: R0(BusB
0000: CBus(R0
00: A+B

01: R1(BusA
001: R1(BusB
0001: CBus(R1
01: A–B

10: R2(BusA
010: R2(BusB
0010: CBus(R2
10: Pass A

11: R3(BusA
011: R3(BusB
0011: CBus(R3
11: Pass B

100: IR(BusB
0100: CBus(IR

101: PC(BusB
0101: CBus(MAR

110: MBR(BusB
0110: CBus(MBR

111: MAR(M
0111: BBus(SHIFT

1000: BBus(PC

1001: BBus(MAR

1010: M(MBR

1011: MBR(M

1100: NOP

1101: NOP

1110: NOP

1111: NOP

Now, we will figure out the encoding for branch instructions. First, we know that we need one bit set to 0 at the top of the instruction (the “Type” field). Assuming that we have 256 possible microinstructions, we will need 8 bits to specify the jump address. This leaves 3 bits, which we will use for the branch condition. The resulting branch instruction format is shown below.

Type
Branch Condition
Branch Destination

1
3
8

The final MCU is shown below. Basically, it consists of an 8-bit counter to hold the program counter, a 256x12 ROM in which the microcode is stored, a 12-bit register to latch the controller outputs, and several decoders to interpret each of the control fields. There is also an 8-input mux which selects the branch condition. Note that the controller outputs are latched on the falling edge of the clock while the program counter is latched on the rising edge. The combinational logic for the memory controller is not shown; however, “Read” would be asserted when “MAR to M” and “M to MBR” were both true, while “Write” would be asserted when “MAR to M” and “MBR to M” were both true.

Thus, the microcode we would use to implement the instruction “ADD Ra, (Rb)offset” is shown here. For simplicity, we will make the assumption that Ra=R0 and Rb=R1. Also note that the specified offset would be contained in the instruction register. X’s, as usual, represent a “don’t care”.

Microinstruction
Numeric Format

DO
R1+Offset(MAR
1 01 100 0101 00

DO
M[MAR](MBR
1 xx 111 1011 xx

DO
R0+MBR(R0
1 00 110 0000 00

JMP
Fetch

[image: image2.png]l— CLK2 + ROM7
10-bit Counter 8Kx8 ROM

Branch 16 - »{LOAD
Variables
9 GND—{A12.10 D7..0
ROM1.0—~—»{ D9.8
TEMP7..0784> D7.0 Q9..0T»A9..0
0UT6.3 CLK1
rowro 8
CLK1 l
A G D70
CLK2
CLK2 —>» 8-bit Register
CLK3
Q7.0
A TEMP7.0 /'8
A 4
CLK3&ROM7 —»/CE D7.0 L»[CE D7.0
> 8-bit Register —> 8-bit Register
Q7.0 Q7.0
0UT15..8 oUT7.0
CLK2

